
2.
Optimizing subroutines in assembly

language
An optimization guide for x86 platforms

By Agner Fog. Technical University of Denmark.

Copyright © 1996 - 2023. Last updated 2023-06-22.

Contents
1 Introduction ... 4

1.1 Reasons for using assembly code .. 5
1.2 Reasons for not using assembly code .. 5
1.3 Operating systems covered by this manual ... 6

2 Before you start ... 7
2.1 Things to decide before you start programming .. 7
2.2 Make a test strategy .. 8
2.3 Common coding pitfalls ... 9

3 The basics of assembly coding .. 11
3.1 Assemblers available .. 11
3.2 Register set and basic instructions .. 13
3.3 Addressing modes .. 18
3.4 Instruction code format ... 25
3.5 Instruction prefixes .. 26

4 ABI standards .. 27
4.1 Register usage .. 28
4.2 Data storage ... 28
4.3 Function calling conventions ... 29
4.4 Name mangling and name decoration .. 31
4.5 Function examples .. 31

5 Using intrinsic functions in C++ ... 33
5.1 Using intrinsic functions for system code .. 35
5.2 Using intrinsic functions for instructions not available in standard C++ 35
5.3 Using intrinsic functions for vector operations ... 35
5.4 Availability of intrinsic functions ... 36

6 Using inline assembly .. 36
6.1 MASM style inline assembly ... 37
6.2 Gnu style inline assembly ... 42

7 Using an assembler ... 44
7.1 Static link libraries ... 46
7.2 Dynamic link libraries .. 47
7.3 Shared object libraries .. 47
7.4 Libraries in source code form .. 48
7.5 Making classes in assembly .. 48
7.6 Thread-safe functions ... 50
7.7 Makefiles .. 50

8 Making function libraries compatible with multiple compilers and platforms 51
8.1 Supporting multiple name mangling schemes ... 52
8.2 Supporting multiple calling conventions in 32 bit mode ... 53
8.3 Supporting multiple calling conventions in 64 bit mode ... 56
8.4 Supporting different object file formats .. 57
8.5 Supporting other high level languages .. 59

9 Optimizing for speed ... 59
9.1 Identify the most critical parts of your code ... 59
9.2 Out of order execution .. 60

 2

9.3 Instruction fetch, decoding and retirement .. 63
9.4 Instruction latency and throughput .. 63
9.5 Break dependency chains ... 64
9.6 Jumps and calls .. 66

10 Optimizing for size ... 72
10.1 Choosing shorter instructions .. 73
10.2 Using shorter constants and addresses .. 74
10.3 Reusing constants .. 75
10.4 Constants in 64-bit mode .. 76
10.5 Addresses and pointers in 64-bit mode ... 76
10.6 Making instructions longer for the sake of alignment ... 78
10.7 Using multi-byte NOPs for alignment .. 81

11 Optimizing memory access.. 81
11.1 How caching works ... 81
11.2 Trace cache .. 82
11.3 µop cache ... 82
11.4 Alignment of data .. 82
11.5 Alignment of code ... 85
11.6 Organizing data for improved caching ... 86
11.7 Organizing code for improved caching .. 86
11.8 Cache control instructions ... 87

12 Loops .. 87
12.1 Minimize loop overhead .. 87
12.2 Induction variables .. 90
12.3 Move loop-invariant code .. 90
12.4 Find the bottlenecks .. 91
12.5 Instruction fetch, decoding and retirement in a loop .. 91
12.6 Distribute µops evenly between execution units .. 92
12.7 An example of analysis for bottlenecks in vector loops ... 92
12.8 Same example with FMA3 .. 94
12.9 Same example with AVX512 ... 95
12.10 Loop unrolling ... 95
12.11 Vector loops using mask registers (AVX512) .. 98
12.12 Optimize caching .. 100
12.13 Parallelization ... 100
12.14 Macro loops .. 102

13 Vector programming .. 104
13.1 Using AVX instruction set and YMM or ZMM registers .. 106
13.2 Mixing VEX and SSE code .. 106
13.3 Using AVX512 instruction set and ZMM registers ... 111
13.4 Conditional moves in xmm and ymm registers .. 112
13.5 Conditional moves with AVX512 ... 115
13.6 Using vector instructions with other types of data than they are intended for 117
13.7 Permuting data ... 119
13.8 Generating constants .. 123
13.9 Accessing unaligned data and partial vectors ... 125
13.10 Vector operations in general purpose registers ... 128

14 Multithreading .. 130
14.1 Simultaneous multithreading ... 130

15 CPU dispatching .. 131
15.1 Checking for operating system support for XMM, YMM, and ZMM registers 132

16 Problematic Instructions .. 134
16.1 LEA instruction (all processors)... 134
16.2 INC and DEC .. 135
16.3 XCHG (all processors) .. 135
16.4 Rotates through carry (all processors) .. 135
16.5 Bit test (all processors) ... 135
16.6 LAHF and SAHF (all processors) .. 136

 3

16.7 Integer multiplication (all processors) .. 136
16.8 Division (all processors) .. 136
16.9 String instructions (all processors) .. 139
16.10 Vectorized string instructions (processors with SSE4.2) 140
16.11 WAIT instruction (all processors) .. 140
16.12 FCOM + FSTSW AX (all processors) .. 141
16.13 FPREM (all processors) .. 142
16.14 FRNDINT (all processors) ... 142
16.15 FSCALE and exponential function (all processors) ... 142
16.16 FPTAN (all processors) ... 142
16.17 FSQRT, SQRTSS ... 143
16.18 FLDCW ... 143
16.19 MASKMOV instructions... 143
16.20 RDRAND and RDSEED instructions ... 144

17 Special topics .. 144
17.1 XMM versus floating point registers .. 144
17.2 MMX versus XMM registers .. 145
17.3 XMM versus YMM and ZMM registers .. 145
17.4 Freeing floating point registers .. 146
17.5 Transitions between floating point and MMX instructions 146
17.6 Converting from floating point to integer .. 146
17.7 Using integer instructions for floating point operations .. 147
17.8 Moving blocks of data ... 149
17.9 Self-modifying code .. 152

18 Measuring performance ... 152
18.1 Testing speed ... 152
18.2 The pitfalls of unit-testing .. 154

19 Literature ... 154
20 Copyright notice .. 155

 4

1 Introduction
This is the second in a series of five manuals:

1. Optimizing software in C++: An optimization guide for Windows, Linux, and Mac
platforms.

2. Optimizing subroutines in assembly language: An optimization guide for x86
platforms.

3. The microarchitecture of Intel, AMD, and VIA CPUs: An optimization guide for
assembly programmers and compiler makers.

4. Instruction tables: Lists of instruction latencies, throughputs and micro-operation
breakdowns for Intel, AMD, and VIA CPUs.

5. Calling conventions for different C++ compilers and operating systems.

The latest versions of these manuals are always available from www.agner.org/optimize.
Copyright conditions are listed on page 155 below.

The present manual explains how to combine assembly code with a high level programming
language and how to optimize CPU-intensive code for speed by using assembly code.

This manual is intended for advanced assembly programmers and compiler makers. It is
assumed that the reader has a good understanding of assembly language and some
experience with assembly coding. Beginners are advised to seek information elsewhere and
get some programming experience before trying the optimization techniques described
here. I can recommend the various introductions, tutorials, discussion forums and
newsgroups on the Internet (see links from www.agner.org/optimize) and the book
"Introduction to 80x86 Assembly Language and Computer Architecture" by R. C. Detmer, 2.
ed. 2006.

The present manual covers all platforms that use the x86 and x86-64 instruction set. This
instruction set is used by most microprocessors from Intel, AMD, and VIA. Operating
systems that can use this instruction set include DOS, Windows, Linux, FreeBSD/Open
BSD, and Intel-based Mac OS. The manual covers the newest microprocessors and the
newest instruction sets. See manual 3 and 4 for details about individual microprocessor
models.

Optimization techniques that are not specific to assembly language are discussed in manual
1: "Optimizing software in C++". Details that are specific to a particular microprocessor are
covered by manual 3: "The microarchitecture of Intel, AMD, and VIA CPUs". Tables of
instruction timings etc. are provided in manual 4: "Instruction tables: Lists of instruction
latencies, throughputs and micro-operation breakdowns for Intel, AMD and VIA CPUs".
Details about calling conventions for different operating systems and compilers are covered
in manual 5: "Calling conventions for different C++ compilers and operating systems".

Programming in assembly language is much more difficult than high-level language. Making
bugs is very easy, and finding them is very difficult. Now you have been warned! Please do
not send your programming questions to me. Such mails will not be answered. There are
various discussion forums on the Internet where you can get answers to your programming
questions if you cannot find the answers in the relevant books and manuals.

Good luck with your hunt for nanoseconds!

http://www.agner.org/optimize
http://www.agner.org/optimize

 5

1.1 Reasons for using assembly code

Assembly coding is not used as much today as previously. However, there are still reasons
for learning and using assembly code. The main reasons are:

1. Educational reasons. It is important to know how microprocessors and compilers
work at the instruction level in order to be able to predict which coding techniques
are most efficient, to understand how various constructs in high level languages
work, and to track hard-to-find errors.

2. Debugging and verifying. Looking at compiler-generated assembly code or the
disassembly window in a debugger is useful for finding errors and for checking how
well a compiler optimizes a particular piece of code.

3. Making compilers. Understanding assembly coding techniques is necessary for
making compilers, debuggers, and other development tools.

4. Embedded systems. Small embedded systems have fewer resources than PC's and
mainframes. Assembly programming can be necessary for optimizing code for speed
or size in small embedded systems.

5. Hardware drivers and system code. Accessing hardware, system control registers,
etc. may sometimes be difficult or impossible with high level code.

6. Accessing instructions that are not accessible from high level language. Certain
assembly instructions have no high-level language equivalent.

7. Self-modifying code. Self-modifying code is generally not profitable because it
interferes with efficient code caching. It may, however, be advantageous for example
to include a small compiler in math programs where a user-defined function has to
be calculated many times.

8. Optimizing code for size. Storage space and memory is so cheap nowadays that it is
not worth the effort to use assembly language for reducing code size. However,
cache size is still such a critical resource that it may be useful in some cases to
optimize a critical piece of code for size in order to make it fit into the code cache.

9. Optimizing code for speed. Modern C++ compilers generally optimize code quite well
in most cases. But there are still cases where compilers perform poorly and where
significant increases in speed can be achieved by careful assembly programming.

10. Function libraries. The total benefit of optimizing code is higher in function libraries
that are used by many programmers.

11. Making function libraries compatible with multiple compilers and operating systems.
It is possible to make library functions with multiple entries that are compatible with
different compilers and different operating systems. This requires assembly
programming.

The main focus in this manual is on optimizing code for speed, though some of the other
topics are also discussed.

1.2 Reasons for not using assembly code

There are so many disadvantages and problems involved in assembly programming that it
is advisable to consider the alternatives before deciding to use assembly code for a
particular task. The most important reasons for not using assembly programming are:

 6

1. Development time. Writing code in assembly language takes much longer time than
in a high level language.

2. Reliability and security. It is easy to make errors in assembly code. The assembler is
not checking if the calling conventions and register save conventions are obeyed.
Nobody is checking for you if the number of PUSH and POP instructions is the same in

all possible branches and paths. There are so many possibilities for hidden errors in
assembly code that it affects the reliability and security of the project unless you
have a very systematic approach to testing and verifying.

3. Debugging and verifying. Assembly code is more difficult to debug and verify
because there are more possibilities for errors than in high level code.

4. Maintainability. Assembly code is more difficult to modify and maintain because the
language allows unstructured spaghetti code and all kinds of dirty tricks that are
difficult for others to understand. Thorough documentation and a consistent
programming style is needed.

5. System code can use intrinsic functions instead of assembly. Modern C++ compilers
have intrinsic functions for accessing system control registers and other system
instructions. Assembly code is no longer needed for device drivers and other system
code when intrinsic functions are available.

6. Application code can use intrinsic functions or vector classes instead of assembly.
Modern C++ compilers have intrinsic functions for vector operations and other
special instructions that previously required assembly programming. It is no longer
necessary to use old fashioned assembly code to take advantage of the Single-
Instruction-Multiple-Data (SIMD) instructions. See page 33.

7. Portability. Assembly code is very platform-specific. Porting to a different platform is
difficult. Code that uses intrinsic functions instead of assembly are portable to all x86
and x86-64 platforms.

8. Compilers have been improved a lot in recent years. The best compilers are now
better than an experienced assembly programmer in many situations.

9. Compiled code may be faster than assembly code because compilers can make
inter-procedural optimization and whole-program optimization. The assembly
programmer usually has to make well-defined functions with a well-defined call
interface that obeys all calling conventions in order to make the code testable and
verifiable. This prevents many of the optimization methods that compilers use, such
as function inlining, register allocation, constant propagation, common sub-
expression elimination across functions, scheduling across functions, etc. These
advantages can be obtained by using C++ code with intrinsic functions or vector
classes instead of assembly code.

1.3 Operating systems covered by this manual

The following operating systems can use x86 family microprocessors:

16 bit: DOS, Windows 3.x.

32 bit: Windows, Linux, FreeBSD, OpenBSD, NetBSD, Intel-based Mac OS X.

64 bit: Windows, Linux, FreeBSD, OpenBSD, NetBSD, Intel-based Mac OS X.

 7

All the UNIX-like operating systems (Linux, BSD, Mac OS) use the same calling
conventions, with very few exceptions. Everything that is said in this manual about Linux
also applies to other UNIX-like systems, possibly including systems not mentioned here.

2 Before you start

2.1 Things to decide before you start programming

Before you start to program in assembly, you have to think about why you want to use
assembly language, which part of your program you need to make in assembly, and what
programming method to use. If you haven't made your development strategy clear, then you
will soon find yourself wasting time optimizing the wrong parts of the program, doing things
in assembly that could have been done in C++, attempting to optimize things that cannot be
optimized further, making spaghetti code that is difficult to maintain, and making code that is
full or errors and difficult to debug.

Here is a checklist of things to consider before you start programming:

• Never make the whole program in assembly. That is a waste of time. Assembly code
should be used only where speed is critical and where a significant improvement in
speed can be obtained. Most of the program should be made in C or C++. These are
the programming languages that are most easily combined with assembly code.

• If the purpose of using assembly is to make system code or use special instructions
that are not available in standard C++ then you should isolate the part of the
program that needs these instructions in a separate function or class with a well-
defined functionality. Use intrinsic functions instead (see p. 33) if possible.

• If the purpose of using assembly is to optimize for speed, then you have to identify
the part of the program that consumes the most CPU time, possibly with the use of a
profiler. Check if the bottleneck is file access, memory access, CPU instructions, or
something else, as described in manual 1: "Optimizing software in C++". Isolate the
critical part of the program into a function or class with a well-defined functionality.

• If the purpose of using assembly is to make a function library then you should clearly
define the functionality of the library. Decide whether to make a function library or a
class library. Decide whether to use static linking (.lib in Windows, .a in Linux) or

dynamic linking (.dll in Windows, .so in Linux). Static linking is usually more

efficient, but dynamic linking may be necessary if the library is called from other
languages than C or C++. You may possibly make both a static and a dynamic link
version of the library.

• If the purpose of using assembly is to optimize an embedded application for size or
speed, then find a development tool that supports both C/C++ and assembly and
make as much as possible in C or C++.

• Decide if the code is reusable or application-specific. Spending time on careful
optimization is more justified if the code is reusable. A reusable code is most
appropriately implemented as a function library or class library.

• Decide if the code should support multithreading. A multithreading application can
take advantage of microprocessors with multiple cores. Any data that must be
preserved from one function call to the next on a per-thread basis should be stored
in a C++ class or a per-thread buffer supplied by the calling program.

 8

• Decide if portability is important for your application. Should the application work in
both Windows, Linux, and Intel-based Mac OS? Should it work in both 32 bit and 64
bit mode? Should it work on non-x86 platforms? This is important for the choice of
compiler, assembler, and programming method.

• Decide if your application should work on old microprocessors. If so, then you may
make one version for microprocessors with, for example, the AVX512 instruction set,
and another version which is compatible with old microprocessors. You may even
make several versions, each optimized for a particular CPU. It is recommended to
make automatic CPU dispatching (see page 131).

• There are three assembly programming methods to choose between: (1) Use
intrinsic functions and vector classes in a C++ compiler. (2) Use inline assembly in a
C++ compiler. (3) Use an assembler. These three methods and their relative
advantages and disadvantages are described in chapter 5, 6, and 7 respectively
(page 33, 36, and 44 respectively).

• If you are using an assembler, then you have to choose between different syntax
dialects. It may be preferred to use an assembler that is compatible with the
assembly code that your C++ compiler can generate.

• Make your code in C++ first and optimize it as much as you can, using the methods
described in manual 1: "Optimizing software in C++". Make the compiler translate
the code to assembly. Look at the compiler-generated code and see if there are any
possibilities for improvement in the code.

• Highly optimized code tends to be very difficult to read and understand for others
and even for yourself when you get back to it after some time. In order to make it
possible to maintain the code, it is important that you organize it into small logical
units (procedures or macros) with a well-defined interface and calling convention and
appropriate comments. Decide on a consistent strategy for code comments and
documentation.

• Save the compiler, assembler, and all other development tools together with the
source code and project files for later maintenance. Compatible tools may not be
available in a few years when updates and modifications in the code are needed.

2.2 Make a test strategy

Assembly code is error prone, difficult to debug, difficult to make in a clearly structured way,
difficult to read, and difficult to maintain, as I have already mentioned. A consistent test
strategy can ameliorate some of these problems and save you a lot of time.

My recommendation is to make the assembly code as an isolated module, function, class or
library with a well-defined interface to the calling program. Make it all in C++ first. Then
make a test program which can test all aspects of the code you want to optimize. It is easier
and safer to use a test program than to test the module in the final application.

The test program has two purposes. The first purpose is to verify that the assembly code
works correctly in all situations. And the second purpose is to test the speed of the
assembly code without invoking the user interface, file access and other parts of the final
application program that may make the speed measurements less accurate and less
reproducible.

You should use the test program repeatedly after each step in the development process and
after each modification of the code.

 9

Make sure the test program works correctly. It is quite common to spend a lot of time
looking for an error in the code under test when in fact the error is in the test program.

There are different test methods that can be used for verifying that the code works correctly.
A white box test supplies a carefully chosen series of different sets of input data to make
sure that all branches, paths and special cases in the code are tested. A black box test
supplies a series of random input data and verifies that the output is correct. A very long
series of random data from a good random number generator can sometimes find rarely
occurring errors that the white box test hasn't found.

The test program may compare the output of the assembly code with the output of a C++
implementation to verify that it is correct. The test should cover all boundary cases and
preferably also illegal input data to see if the code generates the correct error responses.

The speed test should supply a realistic set of input data. A significant part of the CPU time
may be spent on branch mispredictions in code that contains a lot of branches. The amount
of branch mispredictions depends on the degree of randomness in the input data. You may
experiment with the degree of randomness in the input data to see how much it influences
the computation time, and then decide on a realistic degree of randomness that matches a
typical real application.

An automatic test program that supplies a long stream of test data will typically find more
errors and find them much faster than testing the code in the final application. A good test
program will find most errors, but you cannot be sure that it finds all errors. It is possible that
some errors show up only in combination with the final application.

2.3 Common coding pitfalls

The following list points out some of the most common programming errors in assembly
code.

1. Forgetting to save registers. Some registers have callee-save status, for example
EBX. These registers must be saved in the prolog of a function and restored in the

epilog if they are modified inside the function. Remember that the order of POP

instructions must be the opposite of the order of PUSH instructions. See page 28 for a

list of callee-save registers.

2. Unmatched PUSH and POP instructions. The number of PUSH and POP instructions

must be equal for all possible paths through a function. Example:

Example 2.1. Unmatched push/pop
push ebx

test ecx, ecx

jz Finished

...

pop ebx

Finished: ; Wrong! Label should be before pop ebx

ret

Here, the value of EBX that is pushed is not popped again if ECX is zero. The result is

that the RET instruction will pop the former value of EBX and jump to a wrong

address.

3. Using a register that is reserved for another purpose. Some compilers reserve the
use of EBP or EBX for a frame pointer or other purpose. Using these registers for a

different purpose in inline assembly can cause errors.

 10

4. Stack-relative addressing after push. When addressing a variable relative to the
stack pointer, you must take into account all preceding instructions that modify the
stack pointer. Example:

Example 2.2. Stack-relative addressing

mov [esp+4], edi

push ebp

push ebx

cmp esi, [esp+4] ; Wrong!

Here, the programmer probably intended to compare ESI with EDI, but the value of

ESP that is used for addressing has been changed by the two PUSH instructions, so

that ESI is in fact compared with EBP instead.

5. Confusing value and address of a variable. Example:

Example 2.3. Value versus addresssection .data

; NASM syntax:

MyVariable DD 0 ; Define variable

section .text

mov eax, [MyVariable] ; Gets value of MyVariable

mov eax, MyVariable ; Gets address of MyVariable

lea eax, [MyVariable] ; Gets address of MyVariable

mov ebx, [eax] ; Gets value of MyVariable through pointer

; MASM syntax is even more confusing:

mov eax, MyVariable ; Gets value of MyVariable

mov eax, offset MyVariable; Gets address of MyVariable

lea eax, MyVariable ; Gets address of MyVariable

mov ebx, [eax] ; Gets value of MyVariable through pointer

mov ebx, [100] ; Gets the constant 100 despite brackets

mov ebx, ds:[100] ; Gets value from address 100

6. Ignoring calling conventions. It is important to observe the calling conventions for

functions, such as the order of parameters, whether parameters are transferred on
the stack or in registers, and whether the stack is cleaned up by the caller or the
called function. See page 27.

7. Function name mangling. A C++ code that calls an assembly function should use
extern "C" to avoid name mangling. Some systems require that an underscore (_)

is put in front of the name in the assembly code. See page 31.

8. Forgetting return. A function declaration must end with both RET and ENDP. Using

one of these is not enough. The execution will continue in the code after the
procedure if there is no RET.

9. Forgetting stack alignment. The stack pointer must point to an address divisible by

16 before any call statement, except in 16-bit systems and 32-bit Windows. See
page 27.

10. Forgetting shadow space in 64-bit Windows. It is required to reserve 32 bytes of
empty stack space before any function call in 64-bit Windows. See page 30.

11. Mixing calling conventions. The calling conventions in 64-bit Windows and 64-bit
Linux are different. See page 27.

12. Forgetting to clean up floating point register stack. All floating point stack registers
that are used by a function must be cleared, typically with FSTP ST(0), before the

function returns, except for ST(0) if it is used for return value. It is necessary to keep

 11

track of exactly how many floating point registers are in use. If a functions pushes
more values on the floating point register stack than it pops, then the register stack
will grow each time the function is called. An exception is generated when the stack
is full. This exception may occur somewhere else in the program.

13. Forgetting to clear MMX state. A function that uses MMX registers must clear these
with the EMMS instruction before any call or return.

14. Forgetting to clear YMM state. A function that uses YMM or ZMM registers must

clear these with the VZEROUPPER or VZEROALL instruction before any call or return.

15. Forgetting to clear direction flag. Any function that sets the direction flag with STD

must clear it with CLD before any call or return.

16. Mixing signed and unsigned integers. Unsigned integers are compared using the JB

and JA instructions. Signed integers are compared using the JL and JG instructions.

Mixing signed and unsigned integers can have unintended consequences.

17. Forgetting to scale an array index. An array index must be multiplied by the size of
one array element. For example mov eax, MyIntegerArray[ebx*4].

18. Exceeding array bounds. An array with n elements is indexed from 0 to n - 1, not

from 1 to n. A defective loop writing outside the bounds of an array can cause errors
elsewhere in the program that are hard to find.

19. Loop with ECX = 0. A loop that ends with the LOOP instruction will repeat 232 times if

ECX is zero. Be sure to check if ECX is zero before the loop.

20. Reading carry flag after INC or DEC. The INC and DEC instructions do not change the

carry flag. Do not use instructions that read the carry flag, such as ADC, SBB, JC, JBE,

SETA, etc. after INC or DEC. Use ADD and SUB instead of INC and DEC to avoid this

problem.

3 The basics of assembly coding

3.1 Assemblers available

There are several assemblers available for the x86 instruction set. Assembly programmers
are in the unfortunate situation that there is no universally agreed syntax for x86 assembly.
Different assemblers use different syntax variants. The most common assemblers are listed
below.

MASM

The Microsoft assembler is included with Microsoft C++ compilers. Free versions can
sometimes be obtained by downloading the Microsoft Windows driver kit (WDK) or the
platforms software development kit (SDK) or as an add-on to the free Visual C++ Express
Edition. MASM has been a de-facto standard in the Windows world for many years, but is
now falling into disuse. The assembly output of several Windows compilers still uses MASM
syntax. MASM syntax is somewhat messy and inconsistent due to a heritage that dates
back to the very first assemblers for the 8086 processor. Microsoft is still maintaining MASM
in order to provide a complete set of development tools for Windows, but it is obviously not
profitable, and the maintenance of MASM is apparently kept at a minimum. Newer versions
can run only when the compiler is installed.

 12

GAS

The Gnu assembler is part of the Gnu Binutils package that is included with most
distributions of Linux, BSD and Mac OS X. The Gnu and Clang compilers produce assembly
output that goes through the Gnu assembler before it is linked. The Gnu assembler
traditionally uses the AT&T syntax that works well for machine-generated code, but it is very
inconvenient for human-generated assembly code. The AT&T syntax has the operands in
an order that differs from all other x86 assemblers and from the instruction documentation
published by Intel and AMD. It uses various prefixes like % and $ for specifying operand

types. The Gnu assembler is available for all x86 platforms.

Fortunately, the Gnu assembler has an option for using Intel syntax instead. The Gnu-Intel
syntax is similar to MASM syntax. The Gnu-Intel syntax defines only the syntax for
instruction codes, not for directives, functions, macros, etc. The directives still use the old
Gnu-AT&T syntax. Specify .intel_syntax noprefix to use the Intel syntax. Specify

.att_syntax prefix to return to the AT&T syntax before leaving inline assembly in C or

C++ code.

NASM

NASM is a free open source assembler with support for several platforms and object file
formats. The syntax is more clear and consistent than MASM syntax. NASM is updated
regularly with new instruction sets. NASM is currently the best multi-platform assembler and
is widely used by assembly programmers.

YASM

YASM is very similar to NASM and uses exactly the same syntax. YASM and NASM may be
used interchangeably. YASM has not been updated since 2014.

FASM

The Flat assembler is another open source assembler for multiple platforms. The syntax is
not compatible with other assemblers. FASM is itself written in assembly language – an
enticing idea, but unfortunately this makes the development and maintenance of it less
efficient.

UASM

UASM is the latest development in a chain of initiatives by different people. The origin is the
WASM assembler included with Watcom C++ compiler. WASM was continued as an
independent assembler under the name JWASM, and later HJWASM and UASM. It is
compatible with MASM syntax, including advanced macro and high level directives. It may
be used as a plugin to Visual Studio IDE.

HLA

High Level Assembler is actually a high level language compiler that allows assembly-like
statements and produces assembly output. This was probably a good idea at the time it was
invented, but today where many C++ compilers support intrinsic functions, I believe that
HLA is no longer needed. HLA is apparently no longer maintained.

TASM

Borland Turbo Assembler was included with the once popular Borland C++ compiler and
later continued by companies CodeGear and Embarcadero. TASM is obsolete and no
longer available.

Inline assembly

Intel C++ compilers support inline assembly using a subset of the MASM syntax.

 13

Microsoft compilers supports inline assembly only in 32-bit mode. It is possible to access
C++ variables, functions, and labels simply by inserting their names in the assembly code.
This is easy, but does not support C++ register variables. See page 36.

The Gnu and Clang compilers support inline assembly with access to the full range of
instructions and directives of the Gnu assembler in both Intel and AT&T syntax. The access
to C++ variables from assembly uses a versatile but complicated syntax.

The Intel compilers for Linux and Mac systems support both the Microsoft style and the Gnu
style of inline assembly.

Intrinsic functions in C++

This is the most convenient way of combining low-level and high-level code. Intrinsic
functions are high-level language representatives of machine instructions. For example, you
can do a vector addition in C++ by calling the intrinsic function that is equivalent to an
assembly instruction for vector addition. Furthermore, it is possible to define a vector class
with an overloaded + operator so that a vector addition is obtained simply by writing +.

Intrinsic functions are supported by Microsoft, Intel, Gnu, and Clang compilers. See page 33
and manual 1: "Optimizing software in C++".

Which assembler to choose?

In most cases, the easiest solution is to use intrinsic functions in C++ code. The compiler
can take care of most of the optimization so that the programmer can concentrate on
choosing the best algorithm and organizing the data into vectors. System programmers can
access system instructions by using intrinsic functions without having to use assembly
language.

Where real low-level programming is needed, such as in highly optimized function libraries
or device drivers, you may use an assembler.

It may be preferred to use an assembler that is compatible with the C++ compiler you are
using. This allows you to use the compiler for translating C++ to assembly, optimize the
assembly code further, and then assemble it. If the assembler is not compatible with the
syntax generated by the compiler, then you may generate an object file with the compiler
and then disassemble the object file to the assembly syntax you need. The objconv
disassembler supports several different syntax dialects.

The NASM assembler is a good choice for many purposes because it supports many
platforms and object file formats, it is well maintained, and usually up to date with the latest
instruction sets.

The examples in this manual use NASM syntax, unless otherwise noted.

See www.agner.org/optimize for links to various syntax manuals, coding manuals and
discussion forums.

3.2 Register set and basic instructions

Registers in 16 bit mode

General purpose and integer registers

Full register
bit 0 - 15

Partial register
bit 8 - 15

Partial register
bit 0 - 7

AX AH AL

BX BH BL

CX CH CL

http://www.agner.org/optimize/#objconv
http://www.agner.org/optimize

 14

DX DH DL

SI
DI
BP
SP

Flags
IP

Table 3.1. General purpose registers in 16 bit mode.

The 32-bit registers are also available in 16-bit mode if supported by the microprocessor
and operating system. The high word of ESP should not be used because it is not saved

during interrupts.

Floating point registers

Full register
bit 0 - 79
ST(0)

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

Table 3.2. Floating point stack registers

MMX registers may be available if supported by the microprocessor. XMM registers may be
available if supported by microprocessor and operating system.

Segment registers

Full register
bit 0 - 15

CS

DS

ES

SS

Table 3.3. Segment registers in 16 bit mode

Register FS and GS may be available.

Registers in 32 bit mode

General purpose and integer registers

 15

Full register
bit 0 - 31

Partial register
bit 0 - 15

Partial register
bit 8 - 15

Partial register
bit 0 - 7

EAX AX AH AL

EBX BX BH BL

ECX CX CH CL

EDX DX DH DL

ESI SI

EDI DI

EBP BP

ESP SP

EFlags Flags

EIP IP

Table 3.4. General purpose registers in 32 bit mode

Floating point and 64-bit vector registers

Full register
bit 0 - 79

Partial register
bit 0 - 63

ST(0) MM0

ST(1) MM1

ST(2) MM2

ST(3) MM3

ST(4) MM4

ST(5) MM5

ST(6) MM6

ST(7) MM7

Table 3.5. Floating point and MMX registers

The MMX registers are only available if supported by the microprocessor. The ST and MMX
registers cannot be used in the same part of the code. A section of code using MMX
registers must be separated from any subsequent section using ST registers by executing
an EMMS instruction.

128- and bigger integer and floating point vector registers

Full or partial register
bit 0 - 127

Full or partial register
bit 0 - 255

Full register
bit 0 - 511

XMM0 YMM0 ZMM0

XMM1 YMM1 ZMM1

XMM2 YMM2 ZMM2

XMM3 YMM3 ZMM3

XMM4 YMM4 ZMM4

XMM5 YMM5 ZMM5

XMM6 YMM6 ZMM6

XMM7 YMM7 ZMM7

Table 3.6. XMM, YMM and ZMM registers in 32 bit mode

The XMM registers are only available if supported both by the microprocessor and the
operating system. Scalar floating point instructions use only 32 or 64 bits of the XMM
registers for single or double precision, respectively. The YMM registers are available only if
the processor and the operating system supports the AVX instruction set. The ZMM
registers are available if the processor supports the AVX-512 instruction set.

Segment registers

Full register
bit 0 - 15

CS

DS

ES

 16

FS

GS

SS

Table 3.7. Segment registers in 32 bit mode

Registers in 64 bit mode

General purpose and integer registers

Full register
bit 0 - 63

Partial
register
bit 0 - 31

Partial
register
bit 0 - 15

Partial
register
bit 8 - 15

Partial
register
bit 0 - 7

RAX EAX AX AH AL

RBX EBX BX BH BL

RCX ECX CX CH CL

RDX EDX DX DH DL

RSI ESI SI SIL

RDI EDI DI DIL

RBP EBP BP BPL

RSP ESP SP SPL

R8 R8D R8W R8B

R9 R9D R9W R9B

R10 R10D R10W R10B

R11 R11D R11W R11B

R12 R12D R12W R12B

R13 R13D R13W R13B

R14 R14D R14W R14B

R15 R15D R15W R15B

RFlags Flags

RIP

Table 3.8. Registers in 64 bit mode

The high 8-bit registers AH, BH, CH, DH can only be used in instructions that have no REX

prefix.

Note that modifying a 32-bit partial register will set the rest of the register (bit 32-63) to zero,
but modifying an 8-bit or 16-bit partial register does not affect the rest of the register. This
can be illustrated by the following sequence:

; Example 3.1. 8, 16, 32 and 64 bit registers

mov rax, 1111111111111111H ; rax = 1111111111111111H

mov eax, 22222222H ; rax = 0000000022222222H

mov ax, 3333H ; rax = 0000000022223333H

mov al, 44H ; rax = 0000000022223344H

There is a good reason for this inconsistency. Setting the unused part of a register to zero is
more efficient than leaving it unchanged because this removes a false dependence on
previous values. But the principle of resetting the unused part of a register cannot be
extended to 16 bit and 8 bit partial registers because this would break the backwards
compatibility with 32-bit and 16-bit modes.

The only instruction that can have a 64-bit immediate data operand is MOV. Other integer

instructions can only have a 32-bit sign extended operand. Examples:

; Example 3.2. Immediate operands, full and sign extended

mov rax, 1111111111111111H ; Full 64 bit immediate operand

mov rax, -1 ; 32 bit sign-extended operand

mov eax, 0ffffffffH ; 32 bit zero-extended operand

 17

add rax, 1 ; 8 bit sign-extended operand

add rax, 100H ; 32 bit sign-extended operand

add eax, 100H ; 32 bit operand. result is zero-extended

mov rbx, 100000000H ; 64 bit immediate operand

add rax, rbx ; Use an extra register if big operand

It is not possible to use a 16-bit sign-extended operand. If you need to add an immediate
value to a 64 bit register then it is necessary to first move the value into another register if
the value is too big for fitting into a 32 bit sign-extended operand.

Floating point and 64-bit vector registers

Full register
bit 0 - 79

Partial register
bit 0 - 63

ST(0) MM0

ST(1) MM1

ST(2) MM2

ST(3) MM3

ST(4) MM4

ST(5) MM5

ST(6) MM6

ST(7) MM7

Table 3.9. Floating point and MMX registers

The ST and MMX registers cannot be used in the same part of the code. A section of code
using MMX registers must be separated from any subsequent section using ST registers by
executing an EMMS instruction. The ST and MMX registers cannot be used in device drivers

for 64-bit Windows.

128-bit and larger integer and floating point vector registers

Full or partial register
bit 0 - 127

Full or partial register
bit 0 - 255

Full register
bit 0 - 511

XMM0 YMM0 ZMM0

XMM1 YMM1 ZMM1

XMM2 YMM2 ZMM2

XMM3 YMM3 ZMM3

XMM4 YMM4 ZMM4

XMM5 YMM5 ZMM5

XMM6 YMM6 ZMM6

XMM7 YMM7 ZMM7

XMM8 YMM8 ZMM8

XMM9 YMM9 ZMM9

XMM10 YMM10 ZMM10

XMM11 YMM11 ZMM11

XMM12 YMM12 ZMM12

XMM13 YMM13 ZMM13

XMM14 YMM14 ZMM14

XMM15 YMM15 ZMM15

 ZMM16

 ZMM17

 ZMM18

 ZMM19

 ZMM20

 ZMM21

 ZMM22

 ZMM23

 ZMM24

 ZMM25

 ZMM26

 ZMM27

 ZMM28

 18

 ZMM29

 ZMM30

 ZMM31

Table 3.10. XMM, YMM and ZMM registers in 64 bit mode

Scalar floating point instructions use only 32 or 64 bits of the XMM registers for single or
double precision, respectively. The YMM registers are available only if the processor and
the operating system supports the AVX instruction set. The ZMM registers are available
only if the processor supports the AVX512 instruction set. It is possible to use XMM16-31
and YMM16-31 when AVX512VL is supported by the processor.

Segment registers

Full register
bit 0 - 15

CS

FS

GS

Table 3.11. Segment registers in 64 bit mode

Segment registers are only used for special purposes.

3.3 Addressing modes

Addressing in 16-bit mode

16-bit code uses a segmented memory model. A memory operand can have any of these
components:

• A segment specification. This can be any segment register or a segment or group
name associated with a segment register. (The default segment is DS, except if BP is

used as base register). The segment can be implied from a label defined inside a
segment.

• A label defining a relocatable offset. The offset relative to the start of the segment is
calculated by the linker.

• An immediate offset. This is a constant. If there is also a relocatable offset then the
values are added.

• A base register. This can only be BX or BP.

• An index register. This can only be SI or DI. There can be no scale factor.

A memory operand can have all of these components. An operand containing only an
immediate offset is not interpreted as a memory operand by the MASM assembler, even if it
has a []. Examples:

; Example 3.3. Memory operands in 16-bit mode, MASM syntax

MOV AX, DS:[100H] ; Address has segment and immediate offset

ADD AX, MEM[SI]+4 ; Has relocatable offset and index and immediate

Data structures bigger than 64 kb are handled in the following ways. In real mode and
virtual mode (DOS): Adding 1 to the segment register corresponds to adding 10H to the
offset. In protected mode (Windows 3.x): Adding 8 to the segment register corresponds to
adding 10000H to the offset. The value added to the segment must be a multiple of 8.

 19

Addressing in 32-bit mode

32-bit code uses a flat memory model in most cases. Segmentation is possible but only
used for special purposes (e.g. thread environment block in FS).

A memory operand can have any of these components:

• A segment specification. Not used in flat mode.

• A label defining a relocatable offset. The offset relative to the FLAT segment group is

calculated by the linker.

• An immediate offset. This is a constant. If there is also a relocatable offset then the
values are added.

• A base register. This can be any 32 bit register.

• An index register. This can be any 32 bit register except ESP.

• A scale factor applied to the index register. Allowed values are 1, 2, 4, 8.

A memory operand can have all of these components. Examples:

; Example 3.4. Memory operands in 32-bit mode

mov eax, [fs:10H] ; Address has segment and immediate offset

add eax, [mem+esi] ; Has relocatable offset and index

add eax, [esp+ecx*4+8] ; Base, index, scale and immediate offset

Position-independent code in 32-bit mode

Position-independent code is required for making shared objects (*.so) in 32-bit Unix-like

systems. The method commonly used for making position-independent code in 32-bit Linux
and BSD is to use a global offset table (GOT) containing the addresses of all static objects.
The GOT method is quite inefficient because the code has to fetch an address from the
GOT every time it reads or writes data in the data segment. A faster method is to use an
arbitrary reference point, as shown in the following example. Note that this works with the
NASM assembler, but not with several other assemblers:

; Example 3.5a. Position-independent code, 32 bit, NASM syntax

SECTION .data

alpha: dd 1

beta: dd 2

SECTION .text

funca: ; This function returns alpha + beta

 call get_thunk_ecx ; get ecx = eip

refpoint: ; ecx points here

 mov eax, [ecx+alpha-refpoint] ; relative address

 add eax, [ecx+beta -refpoint] ; relative address

 ret

get_thunk_ecx: ; Function for reading instruction pointer

 mov ecx, [esp]

 ret

The only instruction that can read the instruction pointer in 32-bit mode is the call

instruction. In example 3.5 we are using call get_thunk_ecx for reading the instruction

pointer (eip) into ecx. ecx will then point to the first instruction after the call. This is our

reference point, named refpoint.

 20

The Gnu compiler for 32-bit Mac OS X uses a slightly different version of this method:

Example 3.5b. Bad method!

funca: ; This function returns alpha + beta

 call refpoint ; get eip on stack

refpoint:

 pop ecx ; pop eip from stack

 mov eax, [ecx+alpha-refpoint] ; relative address

 add eax, [ecx+beta -refpoint] ; relative address

 ret

The method used in example 3.5b is bad because it has a call instruction that is not
matched by a return. This will cause subsequent returns to be mispredicted on many CPUs.
(See manual 3: "The microarchitecture of Intel, AMD and VIA CPUs" for an explanation of
return prediction).

This method is commonly used in Mac systems, where the Mach-O file format supports
references relative to an arbitrary point. Other file formats do not support this kind of
reference, but it is possible to use a self-relative reference with an offset. The NASM and
Gnu assemblers will do this automatically, while most other assemblers are unable to
handle this situation. It is therefore necessary to use a NASM or Gnu assembler if you want
to generate position-independent code in 32-bit mode with this method. The code may look
strange in a debugger or disassembler, but it executes without any problems in 32-bit Linux,
BSD and Windows systems. In 32-bit Mac systems, the loader may not identify the section
of the target correctly unless you are using an assembler that supports the reference point
method (I am not aware of any other assembler than the Gnu assembler that can do this
correctly).

The GOT method would use the same reference point method as in example 3.5a for
addressing the GOT, and then use the GOT to read the addresses of alpha and beta into

other pointer registers. This is an unnecessary waste of time and registers because if we
can access the GOT relative to the reference point, then we can just as well access alpha

and beta relative to the reference point.

The pointer tables used in switch/case statements can use the same reference point for

the table and for the pointers in the table:

; Example 3.6. Position-independent switch, 32 bit, NASM syntax

SECTION .data

jumptable: dd case1-refpoint, case2-refpoint, case3-refpoint

SECTION .text

global funcb:function

funcb: ; This function implements a switch statement

 mov eax, [esp+4] ; function parameter

 call get_thunk_ecx ; get ecx = eip

refpoint: ; ecx points here

 cmp eax, 3

 jnb case_default ; index out of range

 mov eax, [ecx+eax*4+jumptable-refpoint] ; read table entry

; The jump addresses are relative to refpoint, get absolute address:

 add eax, ecx

 jmp eax ; jump to desired case

case1: ...

 ret

case2: ...

 ret

case3: ...

 21

 ret

case_default:

 ...

 ret

get_thunk_ecx: ; Function for reading instruction pointer

 mov ecx, [esp]

 ret

Addressing in 64-bit mode

64-bit code always uses a flat memory model. Segmentation is impossible except for FS and

GS which are used for special purposes only (thread environment block, etc.).

There are several different addressing modes in 64-bit mode: RIP-relative, 32-bit absolute,
64-bit absolute, and relative to a base register.

RIP-relative addressing

This is the preferred addressing mode for static data. The address contains a 32-bit sign-
extended offset relative to the instruction pointer. The address cannot contain any segment
register or index register, and no base register other than RIP, which is implicit. Example:

; Example 3.7a. RIP-relative memory operand, NASM syntax

default rel

mov eax, [mem]

; Example 3.7b. RIP-relative memory operand, MASM syntax

mov eax, [mem]

; Example 3.7c. RIP-relative memory operand, Gas/Intel syntax

mov eax, [mem+rip]

The MASM assembler always generates RIP-relative addresses for static data when no
explicit base or index register is specified. On other assemblers you must remember to
specify relative addressing.

32-bit absolute addressing in 64 bit mode

A 32-bit constant address is sign-extended to 64 bits. This addressing mode works only if it
is certain that all addresses are below 231 (or above -231 for system code).

It is safe to use 32-bit absolute addressing in Linux and BSD main executables, where all
addresses are below 231 by default, but it cannot be used in shared objects. 32-bit absolute
addresses will often work in Windows main executables as well (but not DLLs), but no
Windows compiler is using this possibility because .exe files may be relocated to higher
addresses in special cases.

32-bit absolute addresses cannot be used in Mac OS X, where addresses are above 232 by
default.

Note that NASM and Gnu assemblers can make 32-bit absolute addresses when you do not
explicitly specify rip-relative addresses. You have to specify default rel in NASM or

[mem+rip] in Gas to avoid 32-bit absolute addresses.

There is absolutely no reason to use absolute addresses for simple memory operands. Rip-
relative addresses make instructions shorter, they eliminate the need for relocation at load
time, and they are safe to use in all systems.

Absolute addresses are needed only for accessing arrays where there is an index register,
e.g.

 22

; Example 3.8. 32 bit absolute addresses in 64-bit mode

mov al, [abs chararray + rsi]

mov ebx, [abs intarray + rsi*4]

This method can be used only if the address is guaranteed to be < 231, as explained above.
See below for alternative methods of addressing static arrays.

The MASM assembler generates absolute addresses only when a base or index register is
specified together with a memory label as in example 3.8 above.

The index register should preferably be a 64-bit register, not a 32-bit register. Segmentation
is possible only with FS or GS.

64-bit absolute addressing

This uses a 64-bit absolute virtual address. The address cannot contain any segment
register, base or index register. 64-bit absolute addresses can only be used with the MOV

instruction, and only with AL, AX, EAX or RAX as source or destination.

; Example 3.9. 64 bit absolute address, NASM syntax

mov eax, dword [qword a]

This addressing mode is not supported by the MASM assembler, but it is supported by most
other assemblers.

Addressing relative to 64-bit base register

A memory operand in this mode can have any of these components:

• A base register. This can be any 64 bit integer register.

• An index register. This can be any 64 bit integer register except RSP.

• A scale factor applied to the index register. The only possible values are 1, 2, 4, 8.

• An immediate offset. This is a constant offset relative to the base register.

A base register is always needed for this addressing mode. The other components are
optional. Examples:

; Example 3.10. Base register addressing in 64 bit mode

mov eax, [rsi]

add eax, [rsp + 4*rcx + 8]

This addressing mode is used for data on the stack, for structure and class members and
for arrays.

Addressing static arrays in 64 bit mode

It is not possible to access static arrays with RIP-relative addressing and an index register.
There are several possible alternatives.

The following examples address static arrays. The C++ code for this example is:

// Example 3.11a. Static arrays in 64 bit mode

// C++ code:

static int a[100], b[100];

for (int i = 0; i < 100; i++) {

 b[i] = -a[i];

}

The simplest solution is to use 32-bit absolute addresses. This is possible as long as the
addresses are below 231.

 23

; Example 3.11b. Use 32-bit absolute addresses

; 64 bit Linux only

; Assumes that image base < 80000000H

SECTION .bss

A: resd 100 ; Define static array A

B: resd 100 ; Define static array B

SECTION .text

xor ecx, ecx ; i = 0

TOPOFLOOP: ; Top of loop

mov eax, [abs A+rcx*4] ; 32-bit address + scaled index

neg eax

mov [abs B+rcx*4], eax ; 32-bit address + scaled index

add ecx, 1

cmp ecx, 100 ; i < 100

jb TOPOFLOOP ; Loop

The assembler will generate a 32-bit relocatable address for A and B in example 3.11b

because it cannot combine a RIP-relative address with an index register.

This method is used in 64-bit Linux to access static arrays. It is not used by any compiler for
64-bit Windows because it is not 100% safe. The image base is typically 222 for application
programs and between 228 and 229 for DLL's in Windows, so this method will work in most
cases, but not all. This method cannot be used in 64-bit Mac systems because all
addresses are above 232 by default.

The second method is to use image-relative addressing. The following solution loads the
image base into register RBX by using a LEA instruction with a RIP-relative address:

; Example 3.11c. Address relative to image base

; 64 bit, Windows only, MASM assembler

.data

A DD 100 dup (?)

B DD 100 dup (?)

extern __ImageBase:byte

.code

lea rbx, [__ImageBase] ; Use RIP-relative address of image base

xor ecx, ecx ; i = 0

TOPOFLOOP: ; Top of loop

; imagerel(A) = address of A relative to image base:

mov eax, [(imagerel A) + rbx + rcx*4]

neg eax

mov [(imagerel B) + rbx + rcx*4], eax

add ecx, 1

cmp ecx, 100

jb TOPOFLOOP

This method is used in 64 bit Windows only and requires the MASM assembler. In Linux,
the image base is available as __executable_start, but image-relative addresses are not

supported in the ELF file format. The Mach-O format allows addresses relative to an
arbitrary reference point, including the image base, which is available as
__mh_execute_header.

The third solution loads the address of array A into register RBX by using a LEA instruction

with a RIP-relative address. The address of B is calculated relative to A.

; Example 3.11d.

 24

; Load address of array into base register

; Works in all 64-bit systems. NASM syntax

default rel ; Use RIP relative addressing when possible

SECTION .bss

A: resd 100 ; Define static array A

B: resd 100 ; Define static array B

SECTION .text

lea rbx, [A] ; Load RIP-relative address of A

xor ecx, ecx ; i = 0

TOPOFLOOP: ; Top of loop

mov eax, [rbx + 4*rcx] ; A[i]

neg eax

mov [(B-A) + rbx + 4*rcx], eax ; Use offset of B relative to A

add ecx, 1

cmp ecx, 100

jb TOPOFLOOP

Note that we can use a 32-bit instruction for incrementing the index (ADD ECX,1), even

though we are using the 64-bit register for index (RCX). This works because we are sure that

the index is non-negative and less than 232. This method can use any address in the data
segment as a reference point and calculate other addresses relative to this reference point.

If an array is more than 231 bytes away from the instruction pointer, then we have to load the
full 64 bit address into a base register. For example, we can replace lea rbx,[A] with

mov rbx, qword A in example 3.11d.

Position-independent code in 64-bit mode

Position-independent code is easy to make in 64-bit mode. Static data can be accessed
with rip-relative addressing. Static arrays can be accessed as in example 3.11d.

The pointer tables of switch statements can be made relative to an arbitrary reference point.
It is convenient to use the table itself as the reference point:

; Example 3.12. switch with relative pointers, 64 bit, NASM syntax

SECTION .data

jumptable: dd case1-jumptable, case2-jumptable, case3-jumptable

SECTION .text

default rel ; use relative addresses

global funcb:function

funcb: ; This function implements a switch statement

 ; The first function parameter is ecx in Windows, edi in Linux

 mov eax, ecx ; function parameter

 cmp eax, 3

 jnb case_default ; index out of range

 lea rdx, [jumptable] ; address of table

 movsxd rax, dword [rdx+rax*4] ; read table entry

; The jump addresses are relative to jumptable, get absolute address:

 add rax, rdx

 jmp rax ; jump to desired case

case1: ...

 ret

case2: ...

 ret

 25

case3: ...

 ret

case_default:

 ...

 ret

This method can be useful for reducing the size of long pointer tables because it uses 32-bit
relative pointers rather than 64-bit absolute pointers.

The MASM assembler cannot generate the relative tables in example 3.12 unless the jump
table is placed in the code segment. It is preferred to place the jump table in the data
segment for optimal caching and code prefetching, and this can be done with the NASM or
Gnu assembler.

3.4 Instruction code format

The format for instruction codes is described in detail in manuals from Intel and AMD. The
basic principles of instruction encoding are explained here because of its relevance to
microprocessor performance. In general, you can rely on the assembler for generating the
smallest possible encoding of an instruction.

Each instruction can consist of the following elements, in the order mentioned:

1. Prefixes (0-5 bytes)
These are prefixes that modify the meaning of the opcode that follows. There are
several different kinds of prefixes as described in table 3.12 below.

2. Opcode (1-3 bytes)
This is the instruction code. It can have these forms:
Single byte: XX
Two bytes: 0F XX
Three bytes: 0F 38 XX or 0F 3A XX
Three bytes opcodes of the form 0F 38 XX always have a mod-reg-r/m byte and no
displacement. Three bytes opcodes of the form 0F 3A XX always have a mod-reg-
r/m byte and 1 byte displacement.

3. mod-reg-r/m byte (0-1 byte)
This byte specifies the operands. It consists of three fields. The mod field is two bits
specifying the addressing mode, the reg field is three bits specifying a register for the
first operand (most often the destination operand), the r/m field is three bits
specifying the second operand (most often the source operand), which can be a
register or a memory operand. The reg field can be part of the opcode if there is only
one operand.

4. SIB byte (0-1 byte)
This byte is used for memory operands with complex addressing modes, and only if
there is a mod-reg-r/m byte. It has two bits for a scale factor, three bits specifying a
scaled index register, and three bits specifying a base pointer register. A SIB byte is
needed in the following cases:
a. If a memory operand has two pointer or index registers,
b. If a memory operand has a scaled index register,
c. If a memory operand has the stack pointer (ESP or RSP) as base pointer,

d. If a memory operand in 64-bit mode uses a 32-bit sign-extended direct memory
address rather than a RIP-relative address.
A SIB byte cannot be used in 16-bit addressing mode.

5. Displacement (0, 1, 2, 4 or 8 bytes)
This is part of the address of a memory operand. It is added to the value of the

 26

pointer registers (base or index or both), if any.
A 1-byte sign-extended displacement is possible in all addressing modes if a pointer
register is specified.
A 2-byte displacement is possible only in 16-bit addressing mode.
A 4-byte displacement is possible in 32-bit addressing mode.
A 4-byte sign-extended displacement is possible in 64-bit addressing mode. If there
are any pointer registers specified then the displacement is added to these. If there
is no pointer register specified and no SIB byte then the displacement is added to
RIP. If there is a SIB byte and no pointer register then the sign-extended value is an
absolute direct address.
An 8-byte absolute direct address is possible in 64-bit addressing mode for a few
MOV instructions that have no mod-reg-r/m byte.

6. Immediate operand (0, 1, 2, 4 or 8 bytes)

This is a data constant which in most cases is a source operand for the operation.
A 1-byte sign-extended immediate operand is possible in all modes for all
instructions that can have immediate operands, except MOV, CALL and RET.

A 2-byte immediate operand is possible for instructions with 16-bit operand size.
A 4-byte immediate operand is possible for instructions with 32-bit operand size.
A 4-byte sign-extended immediate operand is possible for instructions with 64-bit
operand size.
An 8-byte immediate operand is possible only for moves into a 64-bit register.

3.5 Instruction prefixes

The following table summarizes the use of instruction prefixes.

prefix for: 16 bit mode 32 bit mode 64 bit mode

8 bit operand size none none none

16 bit operand size none 66h 66h

32 bit operand size 66h none none

64 bit operand size n.a. n.a. REX.W (48h)

packed integers in mmx register none none none

packed integers in xmm register 66h 66h 66h

packed single-precision floats in xmm register none none none

packed double-precision floats in xmm register 66h 66h 66h

scalar single-precision floats in xmm register F3h F3h F3h

scalar double-precision floats in xmm register F2h F2h F2h

16 bit address size none 67h n.a.

32 bit address size 67h none 67h

64 bit address size n.a. n.a. none

CS segment 2Eh 2Eh n.a.

DS segment 3Eh 3Eh n.a.

ES segment 26h 26h n.a.

SS segment 36h 36h n.a.

FS segment 64h 64h 64h

GS segment 65h 65h 65h

REP or REPE string operation F3h F3h F3h

REPNE string operation F2h F2h F2h

Locked memory operand F0h F0h F0h

Register R8 - R15, XMM8 - XMM15 in reg field n.a. n.a. REX.R (44h)

Register R8 - R15, XMM8 - XMM15 in r/m field n.a. n.a. REX.B (41h)

Register R8 - R15 in SIB.base field n.a. n.a. REX.B (41h)

Register R8 - R15 in SIB.index field n.a. n.a. REX.X (42h)

Register SIL, DIL, BPL, SPL n.a. n.a. REX (40h)

Predict branch taken (Intel NetBurst only) 3Eh 3Eh 3Eh

 27

Predict branch not taken (Intel NetBurst only) 2Eh 2Eh 2Eh

Preserve bounds register on jump (MPX) F2h F2h F2h

VEX prefix, 2 bytes C5h C5h C5h

VEX prefix, 3 bytes C4h C4h C4h

XOP prefix, 3 bytes (AMD only) 8Fh 8Fh 8Fh

EVEX prefix, 4 bytes (AVX-512) 62h 62h 62h

MVEX prefix, 4 bytes (Intel Knights Corner only) n.a. 62h 62h

Table 3.12. Instruction prefixes

Segment prefixes are rarely needed in a flat memory model. The DS segment prefix is only

needed if a memory operand has base register BP, EBP or ESP and the DS segment is

desired rather than SS.

The lock prefix is only allowed on certain instructions that read, modify and write a memory
operand.

The branch prediction prefixes work only on Intel NetBurst (Pentium 4) and are rarely
needed.

There can be no more than one REX prefix. If more than one REX prefix is needed then the
values are OR'ed into a single byte with a value in the range 40h to 4Fh. These prefixes are
available only in 64-bit mode. The bytes 40h to 4Fh are instruction codes in 16-bit and 32-bit
mode. These instructions (INC r and DEC r) are coded differently in 64-bit mode.

The prefixes can be inserted in any order, except for the REX prefixes and the multi-byte
prefixes (VEX, XOP, EVEX, MVEX) which must come after any other prefixes.

The AVX instruction set uses 2- and 3-byte prefixes called VEX prefixes. The VEX prefixes
include bits to replace all 66, F2, F3 and REX prefixes as well as the 0F, 0F 38 and 0F 3A
escape bytes of multibyte opcodes.. VEX prefixes also include bits for specifying YMM
registers, an extra register operand, and bits for future extensions. The EVEX and MVEX
prefixes are similar to the VEX prefixes, with extra bits for supporting more registers,
masked operations, and other features. No additional prefixes are allowed after a VEX,
EVEX or MVEX prefix. The only prefixes allowed before a VEX, EVEX or MVEX prefix are
segment prefixes and address size prefixes.

Meaningless, redundant or misplaced prefixes are ignored, except for the LOCK and VEX
prefixes. But prefixes that have no effect in a particular context may have an effect in future
processors.

Unnecessary prefixes may be used instead of NOP's for aligning code, but an excessive

number of prefixes can slow down instruction decoding on some processors.

There can be any number of prefixes as long as the total instruction length does not exceed
15 bytes. For example, a MOV EAX,EBX with ten ES segment prefixes will still work, but it

may take longer time to decode.

4 ABI standards
ABI stands for Application Binary Interface. An ABI is a standard for how functions are
called, how parameters and return values are transferred, and which registers a function is
allowed to change. It is important to obey the appropriate ABI standard when combining
assembly with high level language. The details of calling conventions etc. are covered in
manual 5: "Calling conventions for different C++ compilers and operating systems". The
most important rules are summarized here for your convenience.

 28

4.1 Register usage

 16 bit
DOS,
Windows

32 bit
Windows,
Unix

64 bit
Windows

64 bit
Unix

Registers that
can be used
freely

AX, BX, CX, DX,

ES,

ST(0)-ST(7)

EAX, ECX, EDX,

ST(0)-ST(7),
XMM0-XMM7,

YMM0-YMM7,

ZMM0-ZMM7

RAX, RCX, RDX,

R8-R11,

ST(0)-ST(7),
XMM0-XMM5,

YMM0-YMM5,

YMM6H-YMM15H,

ZMM16-ZMM31

RAX, RCX, RDX,

RSI, RDI,

R8-R11,

ST(0)-ST(7),
XMM0-XMM15,

YMM0-YMM15,

ZMM16-ZMM31

Registers that
must be
saved and
restored

SI, DI, BP, DS EBX, ESI, EDI,
EBP

RBX, RSI, RDI,

RBP, R12-R15,

XMM6-XMM15

RBX, RBP,

R12-R15

Registers that
cannot be
changed

 DS, ES, FS, GS,
SS

Registers
used for para-
meter
transfer

 (ECX) RCX, RDX, R8,R9,

XMM0-XMM3,
YMM0-YMM3,

ZMM0-ZMM3

RDI, RSI, RDX,

RCX, R8, R9,

XMM0-XMM7,
YMM0-YMM7,

ZMM0-ZMM7

Registers
used for
return values

AX, DX, ST(0) EAX, EDX, ST(0) RAX, XMM0,
YMM0, ZMM0

RAX, RDX, XMM0,

XMM1, YMM0,
ZMM0,

ST(0), ST(1)

Table 4.1. Register usage

The floating point registers ST(0) - ST(7) must be empty before any call or return, except

when used for function return value. The MMX registers must be cleared by EMMS before

any call or return. The YMM registers must be cleared by VZEROUPPER before any call or

return to non-VEX code.

The arithmetic flags can be changed freely. The direction flag may be set temporarily, but
must be cleared before any call or return in 32-bit and 64-bit systems. The interrupt flag
cannot be cleared in protected operating systems. The floating point control word and bit 6-
15 of the MXCSR register must be saved and restored in functions that modify them.

Register FS and GS are used for thread information blocks etc. and should not be changed.

Other segment registers should not be changed, except in segmented 16-bit models.

4.2 Data storage

Variables and objects that are declared inside a function in C or C++ are stored on the stack
and addressed relative to the stack pointer or a stack frame. This is the most efficient way of
storing data, for two reasons. Firstly, the stack space used for local storage is released
when the function returns and may be reused by the next function that is called. Using the
same memory area repeatedly improves data caching. The second reason is that data
stored on the stack can often be addressed with an 8-bit offset relative to a pointer rather
than the 32 bits required for addressing data in the data segment. This makes the code
more compact so that it takes less space in the code cache or trace cache.

 29

Global and static data in C++ are stored in the data segment and addressed with 32-bit
absolute addresses in 32-bit systems and with 32-bit RIP-relative addresses in 64-bit

systems. A third way of storing data in C++ is to allocate space with new or malloc. This

method should be avoided if speed is critical.

4.3 Function calling conventions

Function calling conventions are described in detail in manual 5: "Calling conventions for
different C++ compilers and operating systems". The most important rules are outlined here.

Calling convention in 16 bit mode DOS and Windows 3.x

Function parameters are passed on the stack with the first parameter at the lowest address.
This corresponds to pushing the last parameter first. The stack is cleaned up by the caller.

Parameters of 8 or 16 bits size use one word of stack space. Parameters bigger than 16 bits
are stored in little-endian form, i.e. with the least significant word at the lowest address. All
stack parameters are aligned by 2.

Function return values are passed in registers in most cases. 8-bit integers are returned in
AL, 16-bit integers and near pointers in AX, 32-bit integers and far pointers in DX:AX,

Booleans in AX, and floating point values in ST(0).

Calling convention in 32 bit Windows, Linux, BSD, Mac OS X

Function parameters are passed on the stack according to the following calling conventions:

Calling convention Parameter order on stack Parameters removed by
__cdecl First par. at low address Caller
__stdcall First par. at low address Subroutine

__fastcall Microsoft

and Gnu

First 2 parameters in ecx, edx.

Rest as __stdcall

Subroutine

__fastcall Borland First 3 parameters in eax, edx,

ecx. Rest as __stdcall

Subroutine

_pascal First par. at high address Subroutine

__thiscall Microsoft this in ecx. Rest as
__stdcall

Subroutine

Table 4.2. Calling conventions in 32 bit mode

The __cdecl calling convention is the default in Linux. In Windows, the __cdecl convention

is also the default except for member functions, system functions and DLL's. Statically
linked modules in .obj and .lib files should preferably use __cdecl, while dynamic link

libraries in .dll files should use __stdcall.

The fastest calling convention for functions with integer parameters is __fastcall, but this

calling convention is not standardized.

Remember that the stack pointer is decreased when a value is pushed on the stack. This
means that the parameter pushed first will be at the highest address, in accordance with the
_pascal convention. You must push parameters in reverse order to satisfy the __cdecl and

__stdcall conventions.

Parameters of 32 bits size or less use 4 bytes of stack space. Parameters bigger than 32
bits are stored in little-endian form, i.e. with the least significant DWORD at the lowest

address, and aligned by 4.

 30

Mac OS X and the Gnu compiler version 3 and later align the stack by 16 before every call
instruction, though this behavior is not consistent. It is possible to specify different
alignments, and this can lead to incompatibilities. See manual 5: "Calling conventions for
different C++ compilers and operating systems" for details.

Function return values are passed in registers in most cases. 8-bit integers are returned in
AL, 16-bit integers in AX, 32-bit integers, pointers, references and Booleans in EAX, 64-bit

integers in EDX:EAX, and floating point values in ST(0).

See manual 5: "Calling conventions for different C++ compilers and operating systems" for
details about parameters of composite types (struct, class, union) and vector types

(__m64, __m128, __m256, __m512).

Calling conventions in 64 bit Windows

The first parameter is transferred in RCX if it is an integer or in XMM0 if it is a float or

double. The second parameter is transferred in RDX or XMM1. The third parameter is trans-

ferred in R8 or XMM2. The fourth parameter is transferred in R9 or XMM3. Note that RCX is not

used for parameter transfer if XMM0 is used, and vice versa. No more than four parameters

can be transferred in registers, regardless of type. Any further parameters are transferred
on the stack with the first parameter at the lowest address and aligned by 8. Member
functions have 'this' as the first parameter.

The caller must allocate 32 bytes of free space on the stack in addition to any parameters
transferred on the stack. This is a shadow space where the called function can save the four
parameter registers if it needs to. The shadow space is the place where the first four
parameters would have been stored if they were transferred on the stack according to the
__cdecl rule. The shadow space belongs to the called function which is allowed to store the

parameters (or anything else) in the shadow space. The caller must reserve the 32 bytes of
shadow space even for functions that have no parameters. The caller must clean up the
stack, including the shadow space. Return values are in RAX or XMM0.

The stack pointer must be aligned by 16 before any CALL instruction, so that the value of

RSP is 8 modulo 16 at the entry of a function. The function can rely on this alignment when

storing XMM registers to the stack.

See manual 5: "Calling conventions for different C++ compilers and operating systems" for
details about parameters of composite types (struct, class, union) and vector types

(__m64, __m128, __m256, __m512).

Calling conventions in 64 bit Linux, BSD and Mac OS X

The first six integer parameters are transferred in RDI, RSI, RDX, RCX, R8, R9, respectively.

The first eight floating point parameters are transferred in XMM0 - XMM7. All these registers

can be used, so that a maximum of fourteen parameters can be transferred in registers. Any
further parameters are transferred on the stack with the first parameters at the lowest
address and aligned by 8. The stack is cleaned up by the caller if there are any parameters
on the stack. There is no shadow space. Member functions have 'this' as the first

parameter. Return values are in RAX or XMM0.

The stack pointer must be aligned by 16 before any CALL instruction, so that the value of

RSP is 8 modulo 16 at the entry of a function. The function can rely on this alignment when

storing XMM registers to the stack.

The address range from [RSP-1] to [RSP-128] is called the red zone. A function can safely

store data above the stack in the red zone as long as this is not overwritten by any PUSH or

CALL instructions.

 31

See manual 5: "Calling conventions for different C++ compilers and operating systems" for
details about parameters of composite types (struct, class, union) and vector types

(__m64, __m128, __m256, __m512).

4.4 Name mangling and name decoration

The support for function overloading in C++ makes it necessary to supply information about
the parameters of a function to the linker. This is done by appending codes for the
parameter types to the function name. This is called name mangling. The name mangling
codes have traditionally been compiler specific. Fortunately, there is a growing tendency
towards standardization in this area in order to improve compatibility between different
compilers. The name mangling codes for different compilers are described in detail in
manual 5: "Calling conventions for different C++ compilers and operating systems".

The problem of incompatible name mangling codes is most easily solved by using
extern "C" declarations. Functions with extern "C" declaration have no name

mangling. The only decoration is an underscore prefix in 16- and 32-bit Windows and 32-
and 64-bit Mac OS. There is some additional decoration of the name for functions with
__stdcall and __fastcall declarations.

The extern "C" declaration cannot be used for member functions, overloaded functions,

operators, and other constructs that are not supported in the C language. You can avoid
name mangling in these cases by defining a mangled function that calls an unmangled
function. If the mangled function is defined as inline then the compiler will simply replace the
call to the mangled function by the call to the unmangled function. For example, to define an
overloaded C++ operator in assembly without name mangling:

class C1;

// unmangled assembly function;

extern "C" C1 cplus (C1 const & a, C1 const & b);

// mangled C++ operator

inline C1 operator + (C1 const & a, C1 const & b) {

 // operator + replaced inline by function cplus

 return cplus(a, b);

}

Overloaded functions can be inlined in the same way. Class member functions can be
translated to friend functions as illustrated in example 7.1b page 49.

4.5 Function examples

The following examples show how to code a function in assembly that obeys the calling
conventions. First the code in C++:

// Example 4.1a

extern "C" double sinxpnx (double x, int n) {

 return sin(x) + n * x;

}

The same function can be coded in assembly. The following examples show the same
function coded for different platforms.

; Example 4.1b. 32-bit Windows

extern _sin

global _sinxpnx:function

align 4

_sinxpnx:

; parameter x = [esp+4]

; parameter n = [esp +12]

 32

; return value = st(0)

 fld qword [esp+4] ; x

 sub esp, 8 ; make space for parameter x

 fstp qword [esp] ; store parameter for sin; clear st(0)

 call _sin ; library function for sin()

 add esp, 8 ; clean up stack after call

 fild dword [esp+12] ; n

 fmul qword [esp+4] ; n*x

 fadd ; sin(x) + n*x

 ret ; return value is in st(0)

Here, I have chosen to use the library function _sin instead of FSIN. This may be faster in

some cases because FSIN gives higher precision than needed. The parameter for _sin is

transferred as 8 bytes on the stack.

; Example 4.1c. 32-bit Linux

extern _sin

global sinxpnx:function

align 4

sinxpnx:

; parameter x = [esp+4]

; parameter n = [esp +12]

; return value = st(0)

 fld qword [esp+4] ; x

 sub esp, 12 ; keep stack aligned by 16 before call

 fstp qword [esp] ; store parameter for sin; clear st(0)

 call _sin ; library function for sin()

 add esp, 12 ; clean up stack after call

 fild dword [esp+12] ; n

 fmul qword [esp+4] ; n*x

 fadd ; sin(x) + n*x

 ret ; return value is in st(0)

In 32-bit Linux there is no underscore on function names. The stack must be kept aligned by
16 in Linux (GCC version 3 or later). The call to sinxpnx subtracts 4 from ESP. We are

subtracting 12 more from ESP so that the total amount subtracted is 16. We may subtract

more, as long as the total amount is a multiple of 16. In example 4.1b we subtracted only 8
from ESP because the stack is only aligned by 4 in 32-bit Windows.

; Example 4.1d. 64-bit Windows

extern sin

global sinxpnx:function

align 4

sinxpnx:

 ; parameter x = xmm0

 ; parameter n = edx

 ; return value = xmm0

 push rbx ; rbx must be saved

 movaps [rsp+16],xmm6 ; save xmm6 in my shadow space

 sub rsp, 32 ; shadow space for call to sin

 mov ebx, edx ; save n

 movsd xmm6, xmm0 ; save x

 call sin ; xmm0 = sin(xmm0)

 cvtsi2sd xmm1, ebx ; convert n to double

 mulsd xmm1, xmm6 ; n * x

 addsd xmm0, xmm1 ; sin(x) + n * x

 add rsp, 32 ; restore stack pointer

 movaps xmm6, [rsp+16] ; restore xmm6

 pop rbx ; restore rbx

 ret ; return value is in xmm0

 33

Function parameters are transferred in registers in 64-bit Windows. ECX is not used for

parameter transfer because the first parameter is not an integer. We are using RBX and

XMM6 for storing n and x across the call to sin. We have to use registers with callee-save

status for this, and we have to save these registers on the stack before using them. The
stack must be aligned by 16 before the call to sin and we can rely on the stack being

aligned by 16 before the call to sinxpnx. The call to sinxpnx subtracts 8 from RSP; the

PUSH RBX instruction subtracts 8; and the SUB instruction subtracts 32. The total amount

subtracted is 8+8+32 = 48, which is a multiple of 16 so that the proper alignment is
preserved. The extra 32 bytes on the stack is shadow space for the call to sin. Note that

example 4.1d does not include support for exception handling. It is necessary to add tables
with stack unwind information if the program relies on catching exceptions generated in the
function sin.

; Example 4.1e. 64-bit Linux

extern sin

global sinxpnx:function

align 4

sinxpnx:

 ; parameter x = xmm0

 ; parameter n = edi

 ; return value = xmm0

 push rbx ; rbx must be saved

 sub rsp, 16 ; make local space and align stack by 16

 movaps [rsp], xmm0 ; save x

 mov ebx, edi ; save n

 call sin ; xmm0 = sin(xmm0)

 cvtsi2sd xmm1, ebx ; convert n to double

 mulsd xmm1, [rsp] ; n * x

 addsd xmm0, xmm1 ; sin(x) + n * x

 add rsp, 16 ; restore stack pointer

 pop rbx ; restore rbx

 ret ; return value is in xmm0

64-bit Linux does not use the same registers for parameter transfer as 64-bit Windows
does. There are no XMM registers with callee-save status, so we have to save x on the

stack across the call to sin, even though saving it in a register might be faster (Saving x in

a 64-bit integer register is possible, but slow). n can still be saved in a general purpose

register with callee-save status. The stack is aligned by 16. There is no need for shadow
space on the stack. The red zone cannot be used because it would be overwritten by the
call to sin. Note that example 4.1e does not include support for exception handling. It is

necessary to add tables with stack unwind information if the program relies on catching
exceptions generated in the function sin.

5 Using intrinsic functions in C++
As already mentioned, there are several different ways of combining assembly with high-
level language code: using inline assembly in C++, using intrinsic functions in C++, using
vector classes in C++, and making separate assembly modules. Inline assembly is
described in chapter 6, page 36. Intrinsic functions are described in this chapter. Vector
classes are described in manual 1: "Optimizing software in C++".

Intrinsic functions and vector classes are highly recommended because they are much
easier and safer to use than assembly language syntax. The Microsoft, Intel, Gnu and
Clang C++ compilers have support for intrinsic functions. Most of the intrinsic functions

 34

generate one machine instruction each. An intrinsic function is therefore equivalent to an
assembly instruction.

Coding with intrinsic functions is a kind of high-level assembly. It can easily be combined
with C++ language constructs such as if statements, loops, functions, classes and operator

overloading. Using intrinsic functions is an easier way of doing high level assembly coding
than using .if constructs etc. in an assembler or using the so-called high level assembler

(HLA).

The invention of intrinsic functions has made it much easier to do programming tasks that
previously required coding with assembly syntax. The advantages of using intrinsic
functions are:

• No need to learn assembly language syntax.

• Seamless integration into C++ code.

• Branches, loops, functions, classes, etc. are easily made with C++ syntax.

• The compiler takes care of calling conventions, register usage conventions, etc.

• The code is portable to almost all x86 platforms: 32-bit and 64-bit Windows, Linux,
Mac OS, etc.

• The code is compatible with Microsoft, Gnu, Clang and Intel compilers.

• The compiler takes care of register variables, register allocation and register spilling.
The programmer does not have to care about which register is used for which
variable.

• Different instances of the same inlined function or operator can use different
registers for its parameters. This eliminates the need for register-to-register moves.
The same function coded with assembly syntax would typically use a specific
register for each parameter, so that a move instruction would be required if the value
happens to be in a different register.

• It is possible to define overloaded operators for the intrinsic functions. For example,
the instruction that adds two 4-element vectors of floats is coded as ADDPS in

assembly language, and as _mm_add_ps when intrinsic functions are used. But an

overloaded operator can be defined for the latter so that it is simply coded as a +

when using vector classes. This makes the code look like plain old C++.

• The compiler can optimize the code further, for example by common subexpression
elimination, loop-invariant code motion, scheduling and reordering, etc. This would
have to be done manually if assembly syntax was used. The Clang and Gnu
compilers provide the best optimization.

The disadvantages of using intrinsic functions are:

• Not all assembly instructions have intrinsic function equivalents.

• The function names are sometimes long and difficult to remember.

• An expression with many intrinsic functions looks kludgy and is difficult to read.

• Requires a good understanding of the underlying mechanisms.

 35

• Some compilers are not able to optimize code containing intrinsic functions as much
as it optimizes other code, especially when constant propagation is needed.

• Unskilled use of intrinsic functions can make the code less efficient than simple C++
code.

• The compiler can modify the code or implement it in a less efficient way than the
programmer intended. It may be necessary to look at the code generated by the
compiler to see if it is optimized in the way the programmer intended.

• Mixture of __m128 and __m256 types can cause severe delays if the programmer

does not follow certain rules. Call _mm256_zeroupper() before any transition from

modules compiled with AVX enabled to modules or library functions compiled
without AVX.

5.1 Using intrinsic functions for system code

Intrinsic functions are useful for making system code and access system registers that are
not accessible with standard C++. Some of these functions are listed below.

Functions for accessing system registers:
__rdtsc, __readpmc, __readmsr, __readcr0, __readcr2, __readcr3, __readcr4,

__readcr8, __writecr0, __writecr3, __writecr4, __writecr8, __writemsr,

_mm_getcsr, _mm_setcsr, __getcallerseflags.

Functions for input and output:
__inbyte, __inword, __indword, __outbyte, __outword, __outdword.

Functions for atomic memory read/write operations:
_InterlockedExchange, etc.

Functions for accessing FS and GS segments:

__readfsbyte, __writefsbyte, etc.

Cache control instructions (Require SSE or SSE2 instruction set):
_mm_prefetch, _mm_stream_si32, _mm_stream_pi, _mm_stream_si128, _ReadBarrier,

_WriteBarrier, _ReadWriteBarrier, _mm_sfence.

Other system functions:
__cpuid, __debugbreak, _disable, _enable.

5.2 Using intrinsic functions for instructions not available in standard C++

Some simple instructions that are not available in standard C++ can be coded with intrinsic
functions, for example functions for bit-rotate, bit-scan, etc.:
_rotl8, _rotr8, _rotl16, _rotr16, _rotl, _rotr, _rotl64, _rotr64, _BitScanForward,

_BitScanReverse.

5.3 Using intrinsic functions for vector operations

Vector instructions are very useful for improving the speed of code with inherent parallelism.
There are intrinsic functions for almost all instructions on vector registers.

The use of these intrinsic functions for vector operations is thoroughly described in manual
1: "Optimizing software in C++".

 36

5.4 Availability of intrinsic functions

The intrinsic functions are available in Microsoft, Gnu, Clang, and Intel compilers. Most
intrinsic functions have the same names in all compilers. You have to include an appropriate
header file to get access to the intrinsic functions. Some intrinsic functions are not
supported by all these compilers.

The intrinsic functions are listed in the help documentation for each compiler, in the
appropriate header files, in docs.microsoft.com, in "Intel 64 and IA-32 Architectures
Software Developer’s Manual" (developer.intel.com) and in "Intel Intrinsic Guide" at
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

6 Using inline assembly
Inline assembly is another way of putting assembly code into a C++ file. The keyword asm or

_asm or __asm or __asm__ tells the compiler that the code is assembly. Different compilers

have different syntaxes for inline assembly. The different syntaxes are explained below.

The advantages of using inline assembly are:

• It is easy to combine with C++.

• Variables and other symbols defined in C++ code can be accessed from the
assembly code.

• Only the part of the code that cannot be coded in C++ is coded in assembly.

• All assembly instructions are available.

• The code generated is exactly what you write.

• It is possible to optimize in details.

• The compiler takes care of calling conventions, name mangling and saving registers.

• The compiler can inline a function containing inline assembly.

• Portable to different x86 platforms when using Gnu, Clang, or Intel compiler.

The disadvantages of using inline assembly are:

• Different compilers use different syntax.

• Requires knowledge of assembly language.

• Requires a good understanding of how the compiler works. It is easy to make errors.

• The allocation of registers is mostly done manually. The compiler may allocate
different registers for the same variables.

• The compiler cannot optimize well across the inline assembly code.

• It may be difficult to control function prolog and epilog code.

https://docs.microsoft.com/
http://developer.intel.com/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

 37

• It may not be possible to define data.

• It may not be possible to use macros and other directives.

• It may not be possible to make functions with multiple entries.

• You may inadvertently mix VEX and non-VEX instructions, whereby large penalties
are incurred on some CPUs (see chapter 13.1).

• The Microsoft compiler does not support inline assembly on 64-bit platforms.

The following sections illustrate how to make inline assembly with different compilers.

6.1 MASM style inline assembly

The syntax for inline assembly in Microsoft and Intel compilers for Windows is a MASM-style
syntax. Unfortunately, the syntax for inline assembly is poorly documented or not
documented at all in the compiler manuals. I will therefore briefly describe the syntax here.

The following examples show a function that raises a floating point number x to an integer

power n. The algorithm is to multiply x1, x2, x4, x8, etc. according to each bit in the binary

representation of n. Actually, it is not necessary to code this in assembly because a good

compiler will optimize it almost as much when you just write pow(x,n). My purpose here is

just to illustrate the syntax of inline assembly.

First the code in C++ to illustrate the algorithm:

// Example 6.1a. Raise double x to the power of int n.

double ipow (double x, int n) {

 unsigned int nn = abs(n); // absolute value of n

 double y = 1.0; // used for multiplication

 while (nn != 0) { // loop for each bit in nn

 if (nn & 1) y *= x; // multiply if bit = 1

 x *= x; // square x

 nn >>= 1; // get next bit of nn

 }

 if (n < 0) y = 1.0 / y; // reciprocal if n is negative

 return y; // return y = pow(x,n)

}

And then the optimized code using inline assembly with MASM style syntax in 32-bit
Microsoft or Intel compiler:

// Example 6.1b. MASM style inline assembly, 32 bit mode

double ipow (double x, int n) {

 __asm {

 mov eax, n // Move n to eax

 // abs(n) is calculated by inverting all bits and

 // adding 1 if n < 0:

 cdq // Get sign bit into all bits of edx

 xor eax, edx // Invert bits if negative

 sub eax, edx // Add 1 if negative. Now eax = abs(n)

 fld1 // st(0) = 1.0

 jz L9 // End if n = 0

 fld qword ptr x // st(0) = x, st(1) = 1.0

 jmp L2 // Jump into loop

 L1: // Top of loop

 fmul st(0), st(0) // Square x

 L2: // Loop entered here

 38

 shr eax, 1 // Get each bit of n into carry flag

 jnc L1 // No carry. Skip multiplication, goto next

 fmul st(1), st(0) // Multiply by x squared i times for bit # i

 jnz L1 // End of loop. Stop when nn = 0

 fstp st(0) // Discard st(0)

 test edx, edx // Test if n was negative

 jns L9 // Finish if n was not negative

 fld1 // st(0) = 1.0, st(1) = x^abs(n)

 fdivr // Reciprocal

 L9: // Finish

 } // Result is in st(0)

#pragma warning(disable:1011) // Don't warn for missing return value

}

Note that the function entry and parameters are declared with C++ syntax. The function
body, or part of it, can then be coded with inline assembly. The parameters x and n, which

are declared with C++ syntax, can be accessed directly in the assembly code using the
same names. The compiler simply replaces x and n in the assembly code with the

appropriate memory operands, probably [esp+4] and [esp+12]. If the inline assembly

code needs to access a variable that happens to be in a register, then the compiler will store
it to a memory variable on the stack and then insert the address of this memory variable in
the inline assembly code.

The result is returned in st(0) according to the 32-bit calling convention. The compiler will

normally issue a warning because there is no return y; statement in the end of the

function. This statement is not needed if you know which register to return the value in. The
#pragma warning(disable:1011) removes the warning. If you want the code to work with

different calling conventions (e.g. 64-bit systems) then it is necessary to store the result in a
temporary variable inside the assembly block:

// Example 6.1c. MASM style, independent of calling convention

double ipow (double x, int n) {

 double result; // Define temporary variable for result

 __asm {

 mov eax, n

 cdq

 xor eax, edx

 sub eax, edx

 fld1

 jz L9

 fld qword ptr x

 jmp L2

 L1:fmul st(0), st(0)

 L2:shr eax, 1

 jnc L1

 fmul st(1), st(0)

 jnz L1

 fstp st(0)

 test edx, edx

 jns L9

 fld1

 fdivr

 L9:fstp qword ptr result // store result to temporary variable

 }

 return result;

}

Now the compiler takes care of all aspects of the calling convention and the code works on
all x86 platforms.

 39

The compiler inspects the inline assembly code to see which registers are modified. The
compiler will automatically save and restore these registers if required by the register usage
convention. In some compilers, it is not allowed to modify register ebp or ebx in the inline

assembly code because these registers are needed for a stack frame. The compiler will
generally issue a warning in this case.

It is possible to remove the automatically generated prolog and epilog code by adding
__declspec(naked) to the function declaration. In this case it is the responsibility of the

programmer to add any necessary prolog and epilog code and to save any modified
registers if necessary. The only thing the compiler takes care of in a naked function is name
mangling. Automatic variable name substitution may not work with naked functions because
it depends on how the function prolog is made. A naked function cannot be inlined.

Accessing register variables

Register variables cannot be accessed directly by their symbolic names in MASM-style
inline assembly. Accessing a variable by name in an inline assembly code will force the
compiler to store the variable to a temporary memory location.

If you know which register a variable is in then you can simply write the name of the
register. This makes the code more efficient but less portable.

For example, if the code in the above example is used in 64-bit Windows, then x will be in

register XMM0 and n will be in register EDX. Taking advantage of this knowledge, we can

improve the code:

// Example 6.1d. MASM style, 64-bit Windows, Intel compiler

double ipow (double x, int n) {

 const double one = 1.0; // define constant 1.0

 __asm { // x is in xmm0

 mov eax, edx // get n into eax

 cdq

 xor eax, edx

 sub eax, edx

 movsd xmm1, one // load 1.0

 jz L9

 jmp L2

 L1:mulsd xmm0, xmm0 // square x

 L2:shr eax, 1

 jnc L1

 mulsd xmm1, xmm0 // Multiply by x squared i times

 jnz L1

 movsd xmm0, xmm1 // Put result in xmm0

 test edx, edx

 jns L9

 movsd xmm0, one

 divsd xmm0, xmm1 // Reciprocal

 L9: }

#pragma warning(disable:1011) // Don't warn for missing return value

}

In 64-bit Linux we will have n in register EDI so the line mov eax,edx should be changed

to mov eax,edi.

Accessing class members and structure members

Let's take as an example a C++ class containing a list of integers:

// Example 6.2a. Accessing class data members

// define C++ class

class MyList {

protected:

 40

 int length; // Number of items in list

 int buffer[100]; // Store items

public:

 MyList(); // Constructor

 void AttItem(int item); // Add item to list

 int Sum(); // Compute sum of items

};

MyList::MyList() { // Constructor

 length = 0;}

void MyList::AttItem(int item) { // Add item to list

 if (length < 100) {

 buffer[length++] = item;

 }

}

int MyList::Sum() { // Member function Sum

 int i, sum = 0;

 for (i = 0; i < length; i++) sum += buffer[i];

 return sum;}

Below, I will show how to code the member function MyList::Sum in inline assembly. I

have not tried to optimize the code, my purpose here is simply to show the syntax.

Class members are accessed by loading 'this' into a pointer register and addressing class

data members relative to the pointer with the dot operator (.).

// Example 6.2b. Accessing class members, 32-bit Windows

int MyList::Sum() {

 __asm {

 mov ecx, this // 'this' pointer

 xor eax, eax // sum = 0

 xor edx, edx // loop index, i = 0

 cmp [ecx].length, 0 // if (this->length != 0)

 je L9

 L1: add eax, [ecx].buffer[edx*4] // sum += buffer[i]

 add edx, 1 // i++

 cmp edx, [ecx].length // while (i < length)

 jb L1

 L9:

 } // Return value is in eax

 #pragma warning(disable:1011)

}

Here the 'this' pointer is accessed by its name 'this', and all class data members are

addressed relative to 'this'. The offset of the class member relative to 'this' is obtained by

writing the member name preceded by the dot operator. The index into the array named
buffer must be multiplied by the size of each element in buffer [edx*4].

Some 32-bit compilers for Windows put 'this' in ecx, so the instruction mov ecx,this can

be omitted. 64-bit systems require 64-bit pointers, so ecx should be replaced by rcx and

edx by rdx. 64-bit Windows has 'this' in rcx, while 64-bit Linux has 'this' in rdi.

Structure members are accessed in the same way by loading a pointer to the structure into
a register and using the dot operator. There is no syntax check against accessing private

and protected members. There is no way to resolve the ambiguity if more than one

structure or class has a member with the same name. The MASM assembler can resolve
such ambiguities by using the assume directive or by putting the name of the structure

before the dot, but this is not possible with inline assembly.

 41

Calling functions

Functions are called by their name in inline assembly. Member functions can only be called
from other member functions of the same class. Overloaded functions cannot be called
because there is no way to resolve the ambiguity. It is not possible to use mangled function
names in MASM style inline assembly. It is the responsibility of the programmer to put any
function parameters on the stack or in the right registers before calling a function and to
clean up the stack after the call. It is also the programmer's responsibility to save any
registers you want to preserve across the function call, unless these registers have callee-
save status.

Because of these complications, I will recommend that you go out of the assembly block
and use C++ syntax when making function calls.

Syntax overview

The syntax for MASM-style inline assembly is not well described in any compiler manual I
have seen. I will therefore summarize the most important rules here.

In most cases, the MASM-style inline assembly is interpreted by the compiler without
invoking any assembler. You can therefore not assume that the compiler will accept
anything that the assembler understands.

The inline assembly code is marked by the keyword __asm. Some compilers allow the alias

_asm. The assembly code must be enclosed in curly brackets {} unless there is only one

line. The assembly instructions are separated by newlines. Alternatively, you may separate
the assembly instructions by the __asm keyword without any semicolons.

Instructions and labels are coded in the same way as in MASM. The size of memory
operands can be specified with the PTR operator, for example INC DWORD PTR [ESI]. The

names of instructions and registers are not case sensitive.

Variables, functions, and goto labels declared in C++ can be accessed by the same names

in the inline assembly code. These names are case sensitive.

Data members of structures, classes and unions are accessed relative to a pointer register
using the dot operator.

Comments are initiated with a semicolon (;) or a double slash (//).

Hard-coded opcodes are made with _emit followed by a byte constant, where you would

use DB in MASM. For example _emit 0x90 is equivalent to NOP.

Directives and macros are not allowed.

The compiler takes care of calling conventions and register saving for the function that
contains inline assembly, but not for any function calls from the inline assembly.

Compilers using MASM style inline assembly

MASM-style inline assembly is supported by 16-bit and 32-bit Microsoft C++ compilers, but
the 64-bit Microsoft compiler has no inline assembly.

The Intel C++ compiler supports MASM-style inline assembly in both 32-bit and 64-bit
Windows as well as 32-bit and 64-bit Linux (and Mac OS ?). The Intel compiler under Linux
requires the command line option -use-msasm to recognize this syntax for inline

assembly. Only the keyword __asm works in this case, not the synonyms asm or __asm__.

 42

The Intel compiler converts the MASM syntax to AT&T syntax before sending it to the
assembler. The Intel compiler can therefore be useful as a syntax converter.

6.2 Gnu style inline assembly

Inline assembly works quite differently on the Gnu and Clang compilers because these
compilers compile via assembly rather than producing object code directly. The assembly
code is entered as a string constant which is passed through to the assembler with very little
change. The default syntax is the AT&T syntax that the Gnu assembler uses.

The Gnu-style inline assembly has the advantage that you can pass on any instruction or
directive to the assembler. Everything is possible. The disadvantage is that the syntax is
very elaborate and difficult to learn, as the examples below show.

The Gnu-style inline assembly is supported by the Gnu compiler, the Clang compiler, and
the Intel compiler for Linux in both 32-bit and 64-bit mode.

AT&T syntax

Let us return to example 6.1b and translate it to Gnu style inline assembly with AT&T
syntax:

// Example 6.1e. Gnu-style inline assembly, AT&T syntax

double ipow (double x, int n) {

 double y;

 __asm__ (

 "cltd \n" // cdq

 "xorl %%edx, %%eax \n"

 "subl %%edx, %%eax \n"

 "fld1 \n"

 "jz 9f \n" // Forward jump to nearest 9:

 "fldl %[xx] \n" // Substituted with x

 "jmp 2f \n" // Forward jump to nearest 2:

 "1: \n" // Local label 1:

 "fmul %%st(0), %%st(0) \n"

 "2: \n" // Local label 2:

 "shrl $1, %%eax \n"

 "jnc 1b \n" // Backward jump to nearest 1:

 "fmul %%st(0), %%st(1) \n"

 "jnz 1b \n" // Backward jump to nearest 1:

 "fstp %%st(0) \n"

 "testl %%edx, %%edx \n"

 "jns 9f \n" // Forward jump to nearest 9:

 "fld1 \n"

 "fdivp %%st(0), %%st(1)\n"

 "9: \n" // Assembly string ends here

 // Use extended assembly syntax to specify operands:

 // Output operands:

 : "=t" (y) // Output top of stack to y

 // Input operands:

 : [xx] "m" (x), "a" (n) // Input operand %[xx] = x, eax = n

 // Clobbered registers:

 : "%edx", "%st(1)" // Clobber edx and st(1)

); // __asm__ statement ends here

 return y;

}

 43

We immediately notice that the syntax is very different from the previous examples. Many of
the instruction codes have suffixes for specifying the operand size. Integer instructions use
b for BYTE, w for WORD, l for DWORD, q for QWORD. Floating point instructions use s for DWORD

(float), l for QWORD (double), t for TBYTE (long double). Some instruction codes are

completely different, for example CDQ is changed to CLTD. The order of the operands is the

opposite of MASM syntax. The source operand comes before the destination operand.
Register names have %% prefix, which is changed to % before the string is passed on to the

assembler. Constants have $ prefix. Memory operands are also different. For example,

[ebx+ecx*4+20h] is changed to 0x20(%%ebx,%%ecx,4).

Jump labels can be coded in the same way as in MASM, e.g. L1:, L2:, but I have chosen to

use the syntax for local labels, which is a decimal number followed by a colon. The jump
instructions can then use jmp 1b for jumping backwards to the nearest preceding 1:

label, and jmp 1f for jumping forwards to the nearest following 1: label. The reason why I

have used this kind of labels is that the compiler will produce multiple instances of the inline
assembly code if the function is inlined, which is quite likely to happen. If we use normal
labels like L1: then there will be more than one label with the same name in the final

assembly file, which of course will produce an error. If you want to use normal labels then
add __attribute__((noinline)) to the function declaration to prevent inlining of the

function.

The Gnu style inline assembly does not allow you to put the names of local C++ variables
directly into the assembly code. Only global variable names will work because they have the
same names in the assembly code. Instead you can use the so-called extended syntax as
illustrated above. The extended syntax looks like this:

__asm__ ("assembly code string" : [output list] : [input list] :

[clobbered registers list]);

The assembly code string is a string constant containing assembly instructions separated by
newline characters (\n).

In the above example, the output list is "=t" (y). t means the top-of-stack floating point

register st(0), and y means that this should be stored in the C++ variable named y after

the assembly code string.

There are two input operands in the input list. [xx] "m" (x) means replace %[xx] in the

assembly string with a memory operand for the C++ variable x. "a" (n) means load the

C++ variable n into register eax before the assembly string. There are many different

constraints symbols for specifying different kinds of operands and registers for input and
output. See the GCC manual for details.

The clobbered registers list "%edx", "%st(1)" tells that registers edx and st(1) are

modified by the inline assembly code. The compiler would falsely assume that these
registers were unchanged if they did not occur in the clobber list.

Intel syntax

The above example will be a little easier to code if we use Intel syntax for the assembly
string. The Gnu assembler accepts Intel syntax with the directive .intel_syntax

noprefix. The noprefix means that registers don't need a %-sign as prefix.

// Example 6.1f. Gnu-style inline assembly, Intel syntax

double ipow (double x, int n) {

 double y;

 __asm__ (

 ".intel_syntax noprefix \n" // use Intel syntax for convenience

 44

 "cdq \n"

 "xor eax, edx \n"

 "sub eax, edx \n"

 "fld1 \n"

 "jz 9f \n"

 ".att_syntax prefix \n" // AT&T syntax needed for %[xx]

 "fldl %[xx] \n" // memory operand substituted with x

 ".intel_syntax noprefix \n" // switch to Intel syntax again

 "jmp 2f \n"

 "1: \n"

 "fmul st(0), st(0) \n"

 "2: \n"

 "shr eax, 1 \n"

 "jnc 1b \n"

 "fmul st(1), st(0) \n"

 "jnz 1b \n"

 "fstp st(0) \n"

 "test edx, edx \n"

 "jns 9f \n"

 "fld1 \n"

 "fdivrp \n"

 "9: \n"

 ".att_syntax prefix \n" // switch back to AT&T syntax

 // output operands:

 : "=t" (y) // output in top-of-stack goes to y

 // input operands:

 : [xx] "m" (x), "a" (n) // input memory %[x] for x, eax for n

 // clobbered registers:

 : "%edx", "%st(1)"); // edx and st(1) are modified

 return y;

}

Here, I have inserted .intel_syntax noprefix in the start of the assembly string which

allows me to use Intel syntax for the instructions. The string must end with .att_syntax

prefix to return to the default AT&T syntax, because this syntax is used in the subsequent

code generated by the compiler. The instruction that loads the memory operand x must use

AT&T syntax because the operand substitution mechanism uses AT&T syntax for the
operand substituted for %[xx]. The instruction fldl %[xx] must therefore be written in

AT&T syntax. We can still use AT&T-style local labels. The lists of output operands, input
operands and clobbered registers are the same as in example 6.1e.

7 Using an assembler
There are certain limitations on what you can do with intrinsic functions and inline assembly.
These limitations can be overcome by using an assembler. The principle is to write one or
more assembly files containing the most critical functions of a program and writing the less
critical parts in C++. The different modules are then linked together into an executable file.

The advantages of using an assembler are:

• There are almost no limitations on what you can do.

• You have complete control of all details of the final executable code.

• All aspects of the code can be optimized, including function prolog and epilog,
parameter transfer methods, register usage, data alignment, etc.

 45

• It is possible to make functions with multiple entries.

• It is possible to make code that is compatible with multiple compilers and multiple
operating systems (see page 51).

• Good assemblers have powerful macro features that opens up metaprogramming
possibilities that are absent in most compiled high-level languages (see page 102).

The disadvantages of using an assembler are:

• Assembly language is difficult to learn. There are many instructions to remember.

• Coding in assembly takes more time than coding in a high level language.

• The assembly language syntax is not standardized.

• Assembly code tends to become poorly structured and spaghetti-like. It takes a lot of
discipline to make assembly code well-structured and readable for others.

• Assembly code is not portable between different microprocessor architectures.

• The programmer must know all details of the calling conventions and obey these
conventions in the code.

• The assembler provides very little syntax checking. Many programming errors are
not detected by the assembler.

• There are many things that you can do wrong in assembly code and the errors can
have serious consequences.

• It is difficult to remember which instructions belong to which instruction set
extensions. Using a wrong instruction can cause the program to crash.

• You may inadvertently mix VEX and non-VEX vector instructions. This incurs a large
performance penalty on some Intel CPUs (see chapter 13.1).

• Errors in assembly code can be difficult to trace. For example, the error of not saving
a register can cause a completely different part of the program to malfunction.

• Assembly language is not suitable for making a complete program. Most of the
program has to be made in a different programming language.

The best way to start if you want to make assembly code is to first make the entire program
in C or C++. Optimize the program with the use of the methods described in manual 1:
"Optimizing software in C++". If any part of the program needs further optimization, then
isolate this part in a separate module. Then translate the critical module from C++ to
assembly. There is no need to do this translation manually. Most C++ compilers can
produce assembly code. Turn on all relevant optimization options in the compiler when
translating the C++ code to assembly. The assembly code produced by the compiler is a
good starting point for further optimization. The compiler-generated assembly code is sure
to have the calling conventions right. (The output produced by 64-bit compilers for Windows
is possibly not fully compatible with any assembler).

Inspect the assembly code produced by the compiler to see if there are any possibilities for
further optimization. Sometimes compilers are very smart and produce code that is better
optimized than what an average assembly programmer can do. In other cases, compilers

 46

are incredibly stupid and do things in very awkward and inefficient ways. It is in the latter
case that it is justified to spend time on assembly coding.

Most IDE's (Integrated Development Environments) provide a way of including assembly
modules in a C++ project. For example in Microsoft Visual Studio, you can define a "custom
build step" for an assembly source file. The specification for the custom build step may, for
example, look like this. Command line: ml /c /Cx /Zi /coff $(InputName).asm.

Outputs: $(InputName).obj. Alternatively, you may use a makefile (see page 50) or a

batch file.

The C++ files that call the functions in the assembly module should include a header file
(*.h) containing function prototypes for the assembly functions. It is recommended to add

extern "C" to the function prototypes to remove the compiler-specific name mangling

codes from the function names.

Examples of assembly functions for different platforms are provided in paragraph 4.5, page
31ff.

7.1 Static link libraries

It is convenient to collect assembled code from multiple assembly files into a function
library. The advantages of organizing assembly modules into function libraries are:

• The library can contain many functions and modules. The linker will automatically
pick the modules that are needed in a particular project and leave out the rest so
that no superfluous code is added to the project.

• A function library is easy and convenient to include in a C++ project. All C++
compilers and IDE's support function libraries.

• A function library is reusable. The extra time spent on coding and testing a function
in assembly language is better justified if the code can be reused in different
projects.

• Making as a reusable function library forces you to make well tested and well
documented code with a well-defined functionality and a well-defined interface to the
calling program.

• A reusable function library with a general functionality is easier to maintain and verify
than an application-specific assembly code with a less well-defined responsibility.

• A function library can be used by other programmers who have no knowledge of
assembly language.

A static link function library for Windows is built by using the library manager (e.g. lib.exe)

to combine one or more *.obj files into a *.lib file.

A static link function library for Linux is built by using the archive manager (ar) to combine

one or more *.o files into an *.a file.

A function library must be supplemented by a header file (*.h) containing function

prototypes for the functions in the library. This header file is included in the C++ files that
call the library functions (e.g. #include "mylibrary.h").

It is convenient to use a makefile (see page 50) for managing the commands necessary for
building and updating a function library.

 47

7.2 Dynamic link libraries

The difference between static linking and dynamic linking is that the static link library is
linked into the executable program file so that the executable file contains a copy of only the
necessary parts of the library. A dynamic link library (*.dll) is distributed as a separate file

which is loaded at runtime by the executable file in Windows systems. Linux and Mac OS
use a slightly different type of dynamic libraries called shared objects (*.so). These are

described in the next section.

The advantages of dynamic link libraries are:

• Only one instance of the dynamic link library is loaded into memory when multiple
programs running simultaneously use the same library.

• The dynamic link library can be updated without modifying the executable file.

• A dynamic link library can be called from most programming languages, such as
Pascal, C#, and Visual Basic. Calling from Java is possible but difficult.

The disadvantages of dynamic link libraries are:

• The whole library is loaded into memory even when only a small part of it is needed.

• Loading a dynamic link library takes extra time when the executable program file is
loaded.

• Calling a function in a dynamic link library is less efficient than a static library
because of extra call overhead and because of less efficient code cache use.

• The dynamic link library must be distributed together with the executable file.

• Multiple programs installed on the same computer must use the same version of a
dynamic link library if different versions have the same name. This can cause many
compatibility problems.

A DLL for Windows is made with the Microsoft linker (link.exe). The linker must be

supplied one or more .obj or .lib files containing the necessary library functions and a

DllEntry function, which just returns 1. A module definition file (*.def) is also needed.

Note that DLL functions in 32-bit Windows use the __stdcall calling convention, while

static link library functions use the __cdecl calling convention by default. An example

source code can be found in www.agner.org/random/randoma.zip.

7.3 Shared object libraries

Linux, BSD, and Mac OS use shared objects (*.so) rather than DLLs. Shared objects are
very similar to DLLs and used in the same way.

It is possible to override a symbol name in a shared object just like in a static library. This
makes it different from a DLL. This feature, called symbol interposition, is rarely used and it
comes at a high cost. All functions with public visibility are accessed through a procedure
linkage table (PLT), and all variables and data objects with public visibility are accessed
through a global offset table (GOT). Static variables with only local visibility are also
accessed through the GOT in 32-bit mode. These complications make shared objects less

http://www.agner.org/random/randoma.zip

 48

efficient than static link libraries. See the section "Position-independent code" in manual 1:
"Optimizing software in C++" for a further discussion.

7.4 Libraries in source code form

A problem with subroutine libraries in binary form is that the compiler cannot optimize the
function call. This problem can be solved by supplying the library functions as C++ source
code.

If the library functions are supplied as C++ source, code then the compiler can optimize
away the function calling overhead by inlining the function. It can optimize register allocation
across the function. It can do constant propagation. It can move invariant code when the
function is called inside a loop, etc.

The compiler can only do these optimizations with C++ source code, not with pure assembly
code. The code may contain inline assembly or intrinsic function calls. The compiler can do
further optimizations if the code uses intrinsic function calls, but less so if it uses inline
assembly. Different compilers will not optimize the code equally well.

If the compiler uses whole program optimization, then the library functions can simply be
supplied as a C++ source file. If not, then the library code must be included with #include

statements in order to enable optimization across the function calls. A function defined in an
included file should be declared static and/or inline in order to avoid clashes between

multiple instances of the function.

Some compilers with whole program optimization features can produce half-compiled object
files that allow further optimization at the link stage. Unfortunately, the format of such files is
not standardized – not even between different versions of the same compiler. It is possible
that future compiler technology will allow a standardized format for half-compiled code. This
format should, as a minimum, specify which registers are used for parameter transfer and
which registers are modified by each function. It should preferably also allow register
allocation at link time, constant propagation, common subexpression elimination across
functions, and invariant code motion.

As long as such facilities are not available, we may consider using the alternative strategy of
putting the entire innermost loop into an optimized library function rather than calling the
library function from inside a C++ loop. This solution is used in Intel's Math Kernel Library. If,
for example, you need to calculate a thousand logarithms then you can supply an array of
thousand arguments to a vector logarithm function in the library and receive an array of
thousand results back from the library. This has the disadvantage that intermediate results
have to be stored in RAM memory rather than transferred in registers.

7.5 Making classes in assembly

Classes are coded as structures in assembly, and member functions are coded as functions
that receive a pointer to the class/structure as a parameter.

It is not possible to apply the extern "C" declaration to a member function in C++

because extern "C" refers to the calling conventions of the C language which does not

have classes and member functions. The most logical solution is to use the mangled
function name. Returning to example 6.2a and b page 39, we can write the member function
int MyList::Sum() with a mangled name as follows:

; Example 7.1a (Example 6.2b translated to stand alone assembly)

; Member function, 32-bit Windows

section .text

 49

global ?Sum@MyList@@QAEHXZ:function

; Define structure corresponding to class MyList:

struc MyList

length: resd 1 ; int length

buffer: resd 100 ; int buffer[100];

endstruc

; int MyList::Sum()

; Mangled function name compatible with Microsoft compiler (32 bit):

?Sum@MyList@@QAEHXZ:

;32-bit Windows has 'this' pointer in ECX

 xor eax, eax ; sum = 0

 xor edx, edx ; Loop index i = 0

 cmp dword [ecx+length], 0 ; this->length

 je L9 ; Skip if length = 0

L1: add eax, [ecx+buffer+edx*4] ; sum += buffer[i]

 add edx, 1 ; i++

 cmp edx, [ecx+length] ; while (i < length)

 jb L1 ; Loop

L9: ret ; Return value is in eax

The mangled function name ?Sum@MyList@@QAEHXZ is compiler specific. Gnu and Clang

compilers have other name-mangling codes. Furthermore, other compilers may put 'this'

on the stack rather than in a register. These incompatibilities can be solved by using a
friend function rather than a member function. This solves the problem that a member

function cannot be declared extern "C". The declaration in the C++ header file must then

be changed to the following:

// Example 7.1b. Member function changed to friend function:

// An incomplete class declaration is needed here:

class MyList;

// Function prototype for friend function with 'this' as parameter:

extern "C" int MyList_Sum(MyList * ThisP);

// Class declaration:

class MyList {

 protected:

 int length; // Data members:

 int buffer[100];

 public:

 MyList(); // Constructor

 void AttItem(int item); // Add item to list

 // Make MyList_Sum a friend:

 friend int MyList_Sum(MyList * ThisP);

 // Translate Sum to MyList_Sum by inline call:

 int Sum() {return MyList_Sum(this);}

};

The prototype for the friend function must come before the class declaration because some
compilers do not allow extern "C" inside the class declaration. An incomplete class

declaration is needed because the friend function needs a pointer to the class.

The above declarations will make the compiler replace any call to MyList::Sum by a call to

MyList_Sum because the latter function is inlined into the former. The assembly

implementation of MyList_Sum does not need a mangled name. The pointer will be on the

stack in 32-bit mode, and in rcx or rdi in 64-bit mode.

 50

7.6 Thread-safe functions

A thread-safe or reentrant function is a function that works correctly when it is called
simultaneously from more than one thread. Multithreading is used for taking advantage of
computers with multiple CPU cores. It is reasonable to require that a function library
intended for speed-critical applications should be thread-safe.

Functions are thread-safe when no variables are shared between threads, except for
intended communication between the threads. Constant data can be shared between
threads without problems. Variables that are stored on the stack are thread-safe because
each thread has its own stack. The problem arises only with static variables stored in a data
segment. Static variables are used when data have to be saved from one function call to the
next. It is possible to make thread-local static variables, but this is inefficient and system-
specific.

The best way to store data from one function call to the next in a thread-safe way is to let
the calling function allocate storage space for these data. The most elegant way to do this is
to encapsulate the data and the functions that need them in a class. Each thread must
create an object of the class and call the member functions on this object. The previous
paragraph shows how to make member functions in assembly.

If the thread-safe assembly function has to be called from C or another language that does
not support classes, or does so in an incompatible way, then the solution is to allocate a
storage buffer in each thread and supply a pointer to this buffer to the function.

7.7 Makefiles

A make utility is a universal tool to manage software projects. It keeps track of all the source
files, object files, library files, executable files, etc. in a software project. It does so by means
of a general set of rules based on the date/time stamps of all the files. If a source file is
newer than the corresponding object file, then the object file has to be re-made. If the object
file is newer than the executable file then the executable file has to be re-made.

Any IDE (Integrated Development Environment) contains a make utility which is activated
from a graphical user interface, but in most cases it is also possible to use a command-line
version of the make utility. The command line make utility (called make or nmake) is based

on a set of rules that you can define in a so-called makefile. The advantage of using a
makefile is that it is possible to define rules for any type of files, such as source files in any
programming language, object files, library files, module definition files, resource files,
executable files, zip files, etc. The only requirement is that a tool exists for converting one
type of file to another and that this tool can be called from a command line with the file
names as parameters.

The syntax for defining rules in a makefile is almost the same for all the different make
utilities that come with different compilers for Windows and Linux.

Many IDE's also provide features for user-defined make rules for file types not known to the
IDE, but these utilities are often less general and flexible than a stand-alone make utility.

The following is an example of a makefile for making a function library mylibrary.lib

from three assembly source files func1.asm, func2.asm, func3.asm and packing it

together with the corresponding header file mylibrary.h into a zip file mylibrary.zip.

Example 7.2. makefile for mylibrary, NMAKE syntax

mylibrary.zip: mylibrary.lib mylibrary.h

 zip $@ $?

 51

mylibrary.lib: func1.obj func2.obj func3.obj

 lib /out:$@ $**

.asm.obj

 nasm -f win32 -o $@.obj $*.asm

 # or MASM: ml /c /Cx /coff /Fo$@ $*.asm

The line mylibrary.zip: mylibrary.lib mylibrary.h tells that the file

mylibrary.zip is built from mylibrary.lib and mylibrary.h, and that it must be re-

built if any of these has been modified later than the zip file. The next line, which must be
indented by a tab, specifies the command needed for building the target file
mylibrary.zip from its dependents mylibrary.lib and mylibrary.h. The next two

lines tell how to build the library file mylibrary.lib from the three object files. The line

.asm.obj is a generic rule. It tells that any file with extension .obj can be built from a file

with the same name and extension .asm by using the rule in the following indented line.

The build rules for makefiles can use the following macros for specifying file names:

 Gnu make MS nmake

Current target's full name $@ $@

Full name of dependent file $< $<

Current target's base name without extension $* $*

All dependents of the current target, separated
by spaces

$^ $+ $**

All dependents with a later timestamp than the
current target

$? $?

Table 7.1. Makefile macros

The make utility is activated with the command
nmake /Fmakefile or

make -f makefile.

See the manual for the particular make utility for details.

8 Making function libraries compatible with multiple
compilers and platforms

There are a number of compatibility problems to take care of if you want to make a function
library that is compatible with multiple compilers, multiple programming languages, and
multiple operating systems. The most important compatibility problems have to do with:

1. Name mangling

2. Calling conventions

3. Object file formats

The easiest solution to these portability problems is to make the code in a high level
language such as C++ and make any necessary low-level constructs with the use of
intrinsic functions or inline assembly. The code can then be compiled with different
compilers for the different platforms. Gnu and Clang C++ compilers can build code for

 52

almost any platform, using the same syntax for inline assembly and intrinsic functions on all
x86 platforms. Other compilers may differ.

If full assembly programming is necessary or desired, then there are various methods for
overcoming the compatibility problems between different x86 platforms. These methods are
discussed in the following paragraphs.

8.1 Supporting multiple name mangling schemes

The easiest way to deal with the problems of compiler-specific name mangling schemes is
to turn off name mangling with the extern "C" directive, as explained on page 31.

The extern "C" directive cannot be used for class member functions, overloaded

functions and operators. This problem can be used by making an inline function with a
mangled name to call an assembly function with an unmangled name:

// Example 8.1. Avoid name mangling of overloaded functions in C++

// Prototypes for unmangled assembly functions:

extern "C" double power_d (double x, double n);

extern "C" double power_i (double x, int n);

// Wrap these into overloaded functions:

inline double power (double x, double n) {return power_d(x, n);

inline double power (double x, int n) {return power_i(x, n);

The compiler will simply replace a call to the mangled function with a call to the appropriate
unmangled assembly function without any extra code. The same method can be used for
class member functions, as explained on page 49.

However, in some cases it is desired to preserve the name mangling. Either because it
makes the C++ code simpler, or because the mangled names contain information about
calling conventions and other compatibility issues.

An assembly function can be made compatible with multiple name mangling schemes
simply by giving it multiple public names. Returning to example 4.1b page 31, we can add
mangled names for multiple compilers in the following way:

; Example 8.2. (Example 4.1b rewritten)

; Function with multiple mangled names (32-bit mode)

; double sinxpnx (double x, int n) {return sin(x) + n*x;}

section .text

global _sinxpnx:function, ?sinxpnx@@YANNH@Z:function

global _Z7sinxpnxdi:function, __Z7sinxpnxdi:function

ALIGN 4

; Make public names for each name mangling scheme:

_sinxpnx: ; extern "C" name

?sinxpnx@@YANNH@Z: ; Microsoft compiler

_Z7sinxpnxdi: ; Gnu compiler for Linux

__Z7sinxpnxdi: ; Gnu compiler for Windows and Mac OS

; parameter x = [ESP+4]

; parameter n = [ESP+12]

; return value = ST(0)

 fild dword [esp+12] ; n

 fld qword [esp+4] ; x

 53

 fmul st1, st0 ; n*x

 fsin ; sin(x)

 fadd ; sin(x) + n*x

 ret

Example 8.2 works with most compilers in both 32-bit Windows and 32-bit Linux because
the calling conventions are the same. A function can have multiple public names and the
linker will simply search for a name that matches the call from the C++ file. But a function
call cannot have more than one external name.

The syntax for name mangling for different compilers is described in manual 5: "Calling
conventions for different C++ compilers and operating systems". Applying this syntax
manually is a difficult job. It is much easier and safer to generate each mangled name by
compiling the function in C++ with the appropriate compiler to generate assembly output.
Alternatively, compile to an object file and then disassemble. Command line versions of
most compilers are available for free or as trial versions.

The Intel compiler for Windows is compatible with the Microsoft name mangling scheme.
The Intel and Clang compilers for Linux are compatible with the Gnu name mangling
scheme. Gnu and Clang compilers for Windows may be able to use the Microsoft name
mangling scheme.

8.2 Supporting multiple calling conventions in 32 bit mode

Member functions in 32-bit Windows do not always have the same calling convention. The
Microsoft-compatible compilers use the __thiscall convention with 'this' in register ecx,

while Borland and Gnu compilers use the __cdecl convention with 'this' on the stack. One

solution is to use friend functions as explained on page 49. Another possibility is to make a
function with multiple entries. The following example is a rewrite of example 7.1a page 48
with two entries for the two different calling conventions:

; Example 8.3a (Example 7.1a with two entries)

; Member function, 32-bit mode

; int MyList::Sum()

section .text

global _MyList_Sum:function, @MyList@Sum$qv:function

global _ZN6MyList3SumEv:function, __ZN6MyList3SumEv:function

global ?Sum@MyList@@QAEHXZ:function

; Define structure corresponding to class MyList:

struc MyList

length: resd 1 ; int length

buffer: resd 100 ; int buffer[100];

endstruc

_MyList_Sum: ; for extern "C" friend function

; Make mangled names for compilers with __cdecl convention:

_ZN6MyList3SumEv: ; Gnu comp. for Linux

__ZN6MyList3SumEv: ; Gnu comp. for Windows and Mac OS

 ; Move 'this' pointer from the stack to register ecx:

 mov ecx, [esp+4]

; Make mangled names for compilers with __thiscall convention:

?Sum@MyList@@QAEHXZ: ; Microsoft compiler

 xor eax, eax ; sum = 0

 xor edx, edx ; Loop index i = 0

 cmp dword [ecx+length], 0 ; this->length

 54

 je L9 ; Skip if length = 0

L1: add eax, [ecx+buffer+edx*4] ; sum += buffer[i]

 add edx, 1 ; i++

 cmp edx, [ecx+length] ; while (i < length)

 jb L1 ; Loop

L9: ret ; Return value is in eax

The difference in name mangling schemes is actually an advantage here because it enables
the linker to lead the call to the entry that corresponds to the right calling convention.

The method becomes more complicated if the member function has more parameters.
Consider the function void MyList::AttItem(int item) on page 39. The __thiscall

convention has the parameter 'this' in ecx and the parameter item on the stack at

[esp+4] and requires that the stack is cleaned up by the function. The __cdecl convention

has both parameters on the stack with 'this' at [esp+4] and item at [esp+8] and the stack

cleaned up by the caller. A solution with two function entries requires a jump:

; Example 8.3b

; void MyList::AttItem(int item);

section .text

global _MyList_AttItem:function, _ZN6MyList7AttItemEi:function

global __ZN6MyList7AttItemEi:function,

?AttItem@MyList@@QAEXH@Z:function

; Define structure corresponding to class MyList:

struc MyList

length: resd 1 ; int length

buffer: resd 100 ; int buffer[100];

endstruc

; Function entries

_MyList_AttItem: ; for extern "C" friend function

; Make mangled names for compilers with __cdecl convention:

_ZN6MyList7AttItemEi: ; Gnu comp. for Linux

__ZN6MyList7AttItemEi: ; Gnu comp. for Windows and Mac OS

 ; Move parameters into registers:

 mov ecx, [esp+4] ; ecx = this pointer

 mov edx, [esp+8] ; edx = item

 jmp L0 ; jump into common section

; Make mangled names for compilers with __thiscall convention:

?AttItem@MyList@@QAEXH@Z: ; Microsoft compiler

 ; __thiscall requires stack cleanup by function:

 pop eax ; Remove return address from stack

 pop edx ; Get parameter 'item' from stack

 push eax ; Put return address back on stack

L0: ; common section where parameters are in registers

 ; ecx = this, edx = item

 mov eax, [ecx+length] ; eax = this->length

 cmp eax, 100 ; Check if too high

 jnb L9 ; List is full. Exit

 mov [ecx+buffer+eax*4],edx ; buffer[length] = item

 add eax, 1 ; length++

 mov [ecx+length], eax

L9: ret

 55

In example 8.3b, the two function entries each load all parameters into registers and then
jumps to a common section that doesn't need to read parameters from the stack. The
__thiscall entry must remove parameters from the stack before the common section

because the __thiscall convention requires stack cleanup by the function.

Another compatibility problem occurs when we want to have a static and a dynamic link
version of the same function library in 32-bit Windows. The static link library uses the
__cdecl convention by default, while the dynamic link library uses the __stdcall

convention by default. The static link library is the most efficient solution for C++ programs,
but the dynamic link library is needed for several other programming languages.

One solution to this problem is to specify the __cdecl or the __stdcall convention for both

libraries. Another solution is to make functions with two entries.

The following example shows the function from example 8.2 with two entries for the
__cdecl and __stdcall calling conventions. Both conventions have the parameters on the

stack. The difference is that the stack is cleaned up by the caller in the __cdecl convention

and by the called function in the __stdcall convention.

; Example 8.4a (Example 8.2 with __stdcall and __cdecl entries)

; Function with entries for __stdcall and __cdecl (32-bit Windows):

section .text

global _sinxpnx@12:function, _sinxpnx:function

align 4

; __stdcall entry:

; extern "C" double __stdcall sinxpnx (double x, int n);

_sinxpnx@12:

 ; Get all parameters into registers

 fild dword [esp+12] ; n

 fld qword [esp+4] ; x

 ; Remove parameters from stack:

 pop eax ; Pop return address

 add esp, 12 ; remove 12 bytes of parameters

 push eax ; Put return address back on stack

 jmp L0

; __cdecl entry:

; extern "C" double __cdecl sinxpnx (double x, int n);

_sinxpnx:

 ; Get all parameters into registers

 fild dword [esp+12] ; n

 fld qword [esp+4] ; x

 ; Don't remove parameters from the stack. This is done by caller

L0: ; Common entry with parameters all in registers

; parameter x = st(0)

; parameter n = st(1)

 fmul st1, st0 ; n*x

 fsin ; sin(x)

 fadd ; sin(x) + n*x

 ret ; return value is in st(0)

The method of removing parameters from the stack in the function prolog rather than in the
epilog is admittedly rather kludgy. A more efficient solution is to use conditional assembly:

; Example 8.4b

 56

; Function with versions for __stdcall and __cdecl (32-bit Windows)

section .text

; Choose function prolog according to calling convention:

%ifdef STDCALL ; If STDCALL_ is defined

global _sinxpnx@12:function

_sinxpnx@12: ; extern "C" __stdcall function name

%else

global _sinxpnx:function

_sinxpnx: ; extern "C" __cdecl function name

%endif

; Function body common to both calling conventions:

 fild dword [esp+12] ; n

 fld qword [esp+4] ; x

 fmul st1, st0 ; n*x

 fsin ; sin(x)

 fadd ; sin(x) + n*x

; Choose function epilog according to calling convention:

%ifdef STDCALL ; If STDCALL is defined

 ret 12 ; Clean up stack if __stdcall

%else

 ret ; Don't clean up stack if __cdecl

%endif

This solution requires that you make two versions of the object file, one with __cdecl calling

convention for the static link library and one with __stdcall calling convention for the

dynamic link library. The distinction is made on the command line for the assembler. The
__stdcall version is assembled with /DSTDCALL on the command line to define the macro

STDCALL_, which is detected by the IFDEF conditional.

8.3 Supporting multiple calling conventions in 64 bit mode

Calling conventions are better standardized in 64-bit systems than in 32-bit systems.
Unfortunately, the two sets of calling conventions are quite different. The most important
differences are:

• Function parameters are transferred in different registers in the two systems.

• Registers RSI, RDI, and XMM6 - XMM15 have callee-save status in 64-bit Windows but

not in 64-bit Linux.

• The caller must reserve a "shadow space" of 32 bytes on the stack for the called
function in 64-bit Windows but not in Linux.

• A "red zone" of 128 bytes below the stack pointer is available for storage in 64-bit
Linux but not in Windows.

• The Microsoft name mangling scheme is used in 64-bit Windows, the Gnu name
mangling scheme is used in 64-bit Linux.

Both systems have the stack aligned by 16 before any call, and both systems have the
stack cleaned up by the caller.

It is possible to make functions that can be used in both systems when the differences
between the two systems are taken into account. The function should save the registers that
have callee-save status in Windows or leave them untouched. The function should not use
the shadow space or the red zone. The function should reserve a shadow space for any

 57

function it calls. The function needs two entries in order to resolve the differences in
registers used for parameter transfer if it has any integer parameters.

Let us use example 4.1 page 31 once more and make an implementation that works in both
64-bit Windows and 64-bit Linux.

; Example 8.5a (Example 4.1d/e combined).

; Support for both 64-bit Windows and 64-bit Linux

; double sinxpnx (double x, int n) {return sin(x) + n * x;}

section .text

global _Z7sinxpnxdi, ?sinxpnx@@YANNH@Z

extern sin

align 8

; 64-bit Linux entry:

_Z7sinxpnxdi: ; Gnu name mangling

 ; Linux has n in edi, Windows has n in edx. Move it:

 mov edx, edi

; 64-bit Windows entry:

?sinxpnx@@YANNH@Z: ; Microsoft name mangling

 ; parameter x = xmm0

 ; parameter n = edx

 ; return value = xmm0

 push rbx ; rbx must be saved

 sub rsp, 48 ; space for x, shadow space f. sin, align

 movapd [rsp+32], xmm0 ; save x across call to sin

 mov ebx, edx ; save n across call to sin

 call sin ; xmm0 = sin(xmm0)

 cvtsi2sd xmm1, ebx ; convert n to double

 mulsd xmm1, [rsp+32] ; n * x

 addsd xmm0, xmm1 ; sin(x) + n * x

 add rsp, 48 ; restore stack pointer

 pop rbx ; restore rbx

 ret ; return value is in xmm0

We are not using extern "C" declaration here because we are relying on the different

name mangling schemes for distinguishing between Windows and Linux. The two entries
are used for resolving the differences in parameter transfer. If the function declaration had n

before x, i.e. double sinxpnx (int n, double x);, then the Windows version would

have x in XMM1 and n in ecx, while the Linux version would still have x in XMM0 and n in EDI.

The function is storing x on the stack across the call to sin because there are no XMM

registers with callee-save status in 64-bit Linux. The function reserves 32 bytes of shadow
space for the call to sin even though this is not needed in Linux.

8.4 Supporting different object file formats

Another compatibility problem stems from differences in the formats of object files.

The old Borland, Digital Mars, and 16-bit Microsoft compilers use the OMF format for object
files. Contemporary compilers for 32-bit Windows use the COFF format, also called PE32.
Gnu and Intel compilers under 32-bit Linux prefer the ELF32 format. Gnu and Intel
compilers for Mac OS X use the 32- and 64-bit Mach-O format. All compilers for 64-bit

 58

Windows use the COFF/PE32+ format, while compilers for 64-bit Linux use the ELF64
format.

The NASM assembler can produce OMF, COFF/PE32, ELF32/64, COFF/PE32+ and
MachO32/64 formats. The Gnu assembler (Gas) can produce ELF32/64 and MachO32/64
formats. The MASM assembler can produce both OMF, COFF/PE32 and COFF/PE32+
format object files, but not ELF format.

It is possible to do cross-platform development if you have an assembler that supports all
the object file formats you need or a suitable object file conversion utility. This is useful for
making function libraries that work on multiple platforms. An object file converter and cross-
platform library manager named objconv is available from www.agner.org/optimize.

The objconv utility can change function names in the object file as well as converting to a
different object file format. This may help solve incompatible name mangling schemes.
Repeating example 8.5 without name mangling:

; Example 8.5b.

; Support for both 64-bit Windows and 64-bit Unix systems.

; double sinxpnx (double x, int n) {return sin(x) + n * x;}

section .text

global Unix_sinxpnx, Win_sinxpnx

extern sin

align 8

; 64-bit Linux entry:

Unix_sinxpnx:

 ; Linux has n in edi, Windows has n in edx. Move it:

 mov edx, edi

; 64-bit Windows entry:

Win_sinxpnx:

; parameter x = xmm0

; parameter n = edx

; return value = xmm0

 push rbx ; rbx must be saved

 sub rsp, 48 ; space for x, shadow space f. sin, align

 movapd [rsp+32], xmm0 ; save x across call to sin

 mov ebx, edx ; save n across call to sin

 call sin ; xmm0 = sin(xmm0)

 cvtsi2sd xmm1, ebx ; convert n to double

 mulsd xmm1, [rsp+32] ; n * x

 addsd xmm0, xmm1 ; sin(x) + n * x

 add rsp, 48 ; restore stack pointer

 pop rbx ; restore rbx

 ret ; return value is in xmm0

This function can now be assembled and converted to multiple file formats with the following
commands:

nasm -f win64 -o sinxpnx.obj sinxpnx.nasm

objconv -cof64 -np:Win_: sinxpnx.obj sinxpnx_win.obj

objconv -elf64 -np:Unix_: sinxpnx.obj sinxpnx_linux.o

objconv -mac64 -np:Unix_:_ sinxpnx.obj sinxpnx_mac.o

The first line assembles the code using the NASM assembler and produces a COFF object
file.

http://www.agner.org/optimize

 59

The second line replaces "Win_" with nothing in the beginning of function names in the

object file. The result is a COFF object file for 64-bit Windows where the Windows entry for
our function is available as extern "C" double sinxpnx(double x, int n). The name

Unix_sinxpnx for the Unix entry is still unchanged in the object file, but is not used.

The third line converts the file to ELF format for 64-bit Linux and BSD, and replaces "Unix_"

with nothing in the beginning of function names in the object file. This makes the Unix entry
for the function available as sinxpnx, while the unused Windows entry is Win_sinxpnx.

The fourth line does the same for the MachO file format, and puts an underscore prefix on
the function name, as required by Mac compilers.

Objconv can also build and convert static library files (*.lib, *.a). This makes it possible

to build a multi-platform function library on a single source platform.

An example of using this method is the multi-platform function library asmlib.zip available

from www.agner.org/optimize/. asmlib.zip includes a makefile (see page 50) that makes

multiple versions of the same library by using the object file converter objconv.

More details about object file formats can be found in the book "Linkers and Loaders" by J.
R. Levine (Morgan Kaufmann Publ. 2000).

8.5 Supporting other high level languages

If you are using other high-level languages than C++, and the compiler manual has no
information on how to link with assembly, then see if the manual has any information on
how to link with C or C++ modules. You can probably find out how to link with assembly
from this information.

In general, it is preferred to use simple functions without name mangling, compatible with
the extern "C" and __cdecl or __stdcall conventions in C++. This will work with most

compiled languages. Arrays and strings are usually implemented differently in different
languages.

Many modern programming languages such as C# and Visual Basic.NET cannot link to
static link libraries. You have to make a dynamic link library instead. Delphi Pascal may
have problems linking to object files - it is easier to use a DLL.

Calling assembly code from Java is quite complicated. You have to compile the code to a
DLL or shared object, and use the Java Native Interface (JNI) or Java Native Access (JNA).

9 Optimizing for speed

9.1 Identify the most critical parts of your code

Optimizing software is not just a question of fiddling with the right assembly instructions.
Many modern applications use much more time on loading modules, resource files,
databases, interface frameworks, etc. than on actually doing the calculations the program is
made for. Optimizing the calculation time does not help when the program spends 99.9% of
its time on something other than calculation. It is important to find out where the biggest
time consumers are before you start to optimize anything. Sometimes the solution can be to
change from Java or C# to C++, to use a different user interface framework, to organize file
input and output differently, to cache network data, to avoid dynamic memory allocation,
etc., rather than using assembly language. See manual 1: "Optimizing software in C++" for
further discussion.

http://www.agner.org/optimize/

 60

The use of assembly code for optimizing software is relevant only for highly CPU-intensive
programs such as sound and image processing, encryption, sorting, data compression and
complicated mathematical calculations.

In CPU-intensive software programs, you will often find that more than 99% of the CPU time
is used in the innermost loop. Identifying the most critical part of the code is therefore
necessary if you want to improve the speed of computation. Optimizing less critical parts of
the code will not only be a waste of time, it also makes the code less clear, and less easy to
debug and maintain. Most compiler packages include a profiler that can tell you which part
of the code is most critical. If you do not have a profiler and if it is not obvious which part of
the code is most critical, then set up a number of counter variables that are incremented at
different places in the code to see which part is executed most times. Use the methods
described on page 152 for measuring how long time each part of the code takes.

It is important to study the algorithm used in the critical part of the code to see if it can be
improved. Often you can gain more speed simply by choosing the optimal algorithm than by
any other optimization method.

9.2 Out of order execution

All modern x86 processors can execute instructions out of order. Consider this example:

; Example 9.1a, Out-of-order execution

mov eax, [mem1]

imul eax, 6

mov [mem2], eax

mov ebx, [mem3]

add ebx, 2

mov [mem4], ebx

This piece of code is doing two things that have nothing to do with each other: multiplying
[mem1] by 6 and adding 2 to [mem3]. If it happens that [mem1] is not in the cache then the

CPU has to wait many clock cycles while this operand is being fetched from main memory.
The CPU will look for something else to do in the meantime. It cannot do the second
instruction imul eax,6 because it depends on the output of the first instruction. But the

fourth instruction mov ebx,[mem3] is independent of the preceding instructions so it is

possible to execute mov ebx,[mem3] and add ebx,2 while it is waiting for [mem1]. The

CPUs have many features to support efficient out-of-order execution. Most important is, of
course, the ability to detect whether an instruction depends on the output of a previous
instruction. Another important feature is register renaming. Assume that the we are using
the same register for multiplying and adding in example 9.1a because there are no more
spare registers:

; Example 9.1b, Out-of-order execution with register renaming

mov eax, [mem1]

imul eax, 6

mov [mem2], eax

mov eax, [mem3]

add eax, 2

mov [mem4], eax

Example 9.1b will work exactly as fast as example 9.1a because the CPU is able to use
different physical registers for the same logical register eax. This works in a very elegant

way. The CPU assigns a new physical register to hold the value of eax every time eax is

written to. This means that the above code is changed inside the CPU to a code that uses
four different physical registers for eax. The first register is used for the value loaded from

[mem1]. The second register is used for the output of the imul instruction. The third register

is used for the value loaded from [mem3]. And the fourth register is used for the output of

 61

the add instruction. The use of different physical registers for the same logical register

enables the CPU to make the last three instructions in example 9.1b independent of the first
three instructions. The CPU must have a lot of physical registers for this mechanism to work
efficiently. The number of physical registers is different for different microprocessors, but
you can generally assume that the number is sufficient for quite a lot of instruction
reordering.

Partial registers

Some CPUs can keep different parts of a register separate, while other CPUs always treat a
register as a whole. If we change example 9.1b so that the second part uses 16-bit registers
then we have the problem of a false dependence:

; Example 9.1c, False dependence of partial register

mov eax, [mem1] ; 32 bit memory operand

imul eax, 6

mov [mem2], eax

mov ax, [mem3] ; 16 bit memory operand

add ax, 2

mov [mem4], ax

Here the instruction mov ax,[mem3] changes only the lower 16 bits of register eax, while

the upper 16 bits retain the value they got from the imul instruction. Some CPUs from both

Intel, AMD and VIA are unable to rename a partial register. The consequence is that the mov

ax,[mem3] instruction has to wait for the imul instruction to finish because it needs to

combine the 16 lower bits from [mem3] with the 16 upper bits from the imul instruction.

Other CPUs are able to split the register into parts in order to avoid the false dependence,
but this has another disadvantage in case the two parts have to be joined together again.
Assume, for example, that the code in example 9.1c is followed by PUSH EAX. On some

processors, this instruction has to wait for the two parts of EAX to retire in order to join them

together, at the cost of 5-6 clock cycles. Other processors will generate an extra µop for
joining the two parts of the register together.

These problems are avoided by replacing mov ax,[mem3] with movzx eax,[mem3]. This

resets the high bits of eax and breaks the dependence on any previous value of eax. In 64-

bit mode, it is sufficient to write to the 32-bit register because this always resets the upper
part of a 64-bit register. Thus, movzx eax,[mem3] and movzx rax,[mem3] are doing

exactly the same thing. The 32-bit version of the instruction is one byte shorter than the 64-
bit version. Any use of the high 8-bit registers AH, BH, CH, DH should be avoided because it

can cause false dependences and less efficient code.

The flags register can cause similar problems for instructions that modify some of the flag
bits and leave other bits unchanged. For example, the INC and DEC instructions leave the

carry flag unchanged but modifies the zero and sign flags.

Micro-operations

Another important feature is the splitting of instructions into micro-operations (abbreviated
µops or uops). The following example shows the advantage of this:

; Example 9.2, Splitting instructions into uops

push eax

call SomeFunction

The push eax instruction does two things. It subtracts 4 from the stack pointer and stores

eax to the address pointed to by the stack pointer. Assume now that eax is the result of a

long and time-consuming calculation. This delays the push instruction. The call instruction

depends on the value of the stack pointer which is modified by the push instruction. If

 62

instructions were not split into µops then the call instruction would have to wait until the

push instruction was finished. But the CPU splits the push eax instruction into sub esp,4

followed by mov [esp],eax. The sub esp,4 micro-operation can be executed before eax

is ready, so the call instruction will wait only for sub esp,4, not for mov [esp],eax.

Execution units

Out-of-order execution becomes even more efficient when the CPU can do more than one
thing at the same time. Many CPUs can do two, three, or more things at the same time if the
things to do are independent of each other and do not use the same execution units in the
CPU. Modern CPUs have at least two integer ALU's (Arithmetic Logic Units) so that they
can do two or more integer additions per clock cycle. Modern CPUs may have two floating
point arithmetic units as well so that it may be possible to do two floating point operations at
the same time. There may be one or two memory read units and one memory write unit so
that it is possible to read and write to memory at the same time. The maximum average
number of µops per clock cycle is three or four on many processors. It may be possible, for
example, to do an integer operation, a floating point operation, and a memory operation in
the same clock cycle. The maximum number of arithmetic operations (i.e. anything else
than memory read or write) is limited to two, three, or four µops per clock cycle, depending
on the CPU.

Pipelined instructions

Floating point operations typically take more than one clock cycle, but they are often
pipelined so that e.g. a new floating point addition can start before the previous addition is
finished. Vector instructions are using the floating point execution units even for integer
instructions on most CPUs. The details about which instructions can be executed
simultaneously or pipelined and how many clock cycles each instruction takes are CPU
specific. The details for each type of CPU are explained manual 3: "The microarchitecture of
Intel, AMD and VIA CPUs" and manual 4: "Instruction tables".

Summary

The most important things you have to be aware of in order to take maximum advantage of
out-or-order execution are:

• At least the following registers can be renamed: all general purpose registers, the
stack pointer, the flags register, floating point registers, and vector registers. Some
CPUs can also rename segment registers and the floating point control word.

• Prevent false dependences by writing to a full register rather than a partial register.

• The INC and DEC instructions are inefficient on some CPUs because they write to

only part of the flags register (excluding the carry flag). Use ADD or SUB instead to

avoid false dependences or inefficient splitting of the flags register, especially if they
are followed by an instruction that reads the flags.

• A chain of instructions where each instruction depends on the previous one cannot
execute out of order. Avoid long dependency chains. (See page 64).

• Memory operands cannot be renamed.

• A memory read can execute before a preceding memory write to a different address
in most cases. Any pointer or index registers should be calculated as early as
possible so that the CPU can verify that the addresses of memory operands are
different.

 63

• A memory write may not be able to execute before a preceding write, but the write
buffers can hold a number of pending writes, typically four or more.

• A memory read can execute before or simultaneously with another preceding read
on most processors.

• The CPU can do more things simultaneously if the code contains a good mixture of
instructions from different categories, such as: simple integer instructions, floating
point or vector instructions, memory read, memory write.

9.3 Instruction fetch, decoding and retirement

Instruction fetching can be a bottleneck. Many processors cannot fetch more than 16 bytes
of instruction code per clock cycle. It may be necessary to make instructions as short as
possible if this limit turns out to be critical. One way of making instructions shorter is to
replace memory operands by pointers (see chapter 10 page 72). The address of memory
operands can possibly be loaded into pointer registers outside of a loop if instruction
fetching is a bottleneck. Large constants can likewise be loaded into registers.

Instruction fetching is delayed by jumps on most processors. It is important to minimize the
number of jumps in critical code. Branches that are not taken and correctly predicted do not
delay instruction fetching. It is therefore advantageous to organize if-else branches so that
the branch that is followed most commonly is the one where the conditional jump is not
taken.

Most processors fetch instructions in aligned 16-byte or 32-byte blocks. It can be
advantageous to align critical loop entries and subroutine entries by 16 in order to minimize
the number of 16-byte boundaries in the code. Alternatively, make sure that there is no 16-
byte boundary in the first few instructions after a critical loop entry or subroutine entry.

Instruction decoding is often a bottleneck. The organization of instructions that gives the
optimal decoding is processor-specific. On AMD processors it is preferred to avoid
instructions that generate more than 2 µops.

Instructions with multiple prefixes can slow down decoding. There is a maximum number of
prefixes that an instruction can have without slowing down decoding, depending on the
CPU. Avoid address size prefixes. Avoid operand size prefixes on instructions with an
immediate operand. For example, it is preferred to replace MOV AX,2 by MOV EAX,2.

Some CPUs have a µop cache or a tiny loopback buffer that helps remove the bottleneck of
instruction decoding in small loops. Keep loops small so that they are likely to fit into the µop
cache or loopback buffer. Avoid unnecessary loop unrolling.

Older Intel processors have a problem called register read stalls. This occurs if the code has
several registers which are often read from but seldom written to.

All these details are processor-specific. See manual 3: "The microarchitecture of Intel, AMD
and VIA CPUs" for details.

9.4 Instruction latency and throughput

The latency of an instruction is the number of clock cycles it takes from the time the
instruction starts to execute till the result is ready. The time it takes to execute a
dependency chain is the sum of the latencies of all instructions in the chain.

The throughput of an instruction is the maximum number of instructions of the same kind
that can be executed per clock cycle if the instructions are independent. I prefer to list the

 64

reciprocal throughputs because this makes it easier to compare latency and throughput.
The reciprocal throughput is the average time it takes from the time an instruction starts to
execute till another independent instruction of the same type can start to execute, or the
number of clock cycles per instruction in a series of independent instructions of the same
kind. For example, floating point addition on a Core 2 processor has a latency of 3 clock
cycles and a reciprocal throughput of 1 clock per instruction. This means that the processor
uses 3 clock cycles per addition if each addition depends on the result of the preceding
addition, but only 1 clock cycle per addition if the additions are independent.

Manual 4: "Instruction tables" contains detailed lists of latencies and throughputs for almost
all instructions on many different microprocessors from Intel, AMD and VIA.

The following list shows some typical values.

Instruction Typical latency Typical reciprocal
throughput

Integer move 1 0.25-0.5

Integer addition 1 0.25-0.5

Integer Boolean 1 0.25-1

Integer shift 1 0.33-1

Integer multiplication 3-10 1

Integer division 20-80 20-40

Floating point addition 3-6 0.5-1

Floating point multiplication 4-8 0.5-2

Floating point division 20-45 20-45

Integer vector addition 1-2 0.5-2

Integer vector multiplication 3-7 1-2

Floating point vector addition 3-5 0.5-2

Floating point vector multiplication 4-7 0.5-2

Floating point vector division 20-60 20-60

Memory read (cached) 3-4 0.5-1

Memory write (cached) 3-4 1

Jump or call 0 1-2

Table 9.1. Typical instruction latencies and throughputs

9.5 Break dependency chains

In order to take advantage of out-of-order execution, you have to avoid long dependency
chains. Consider the following C++ example, which calculates the sum of 100 numbers:

// Example 9.3a, Loop-carried dependency chain

double list[100], sum = 0.;

for (int i = 0; i < 100; i++) sum += list[i];

This code is doing a hundred additions, and each addition depends on the result of the
preceding one. This is a loop-carried dependency chain. A loop-carried dependency chain
can be very long and completely prevent out-of-order execution for a long time. Only the
calculation of i can be done in parallel with the floating point addition.

Assuming that floating point addition has a latency of 4 and a reciprocal throughput of 1, the
optimal implementation will have four accumulators so that we always have four additions in
the pipeline of the floating point adder. In C++ this will look like:

// Example 9.3b, Multiple accumulators

double list[100], sum1 = 0., sum2 = 0., sum3 = 0., sum4 = 0.;

for (int i = 0; i < 100; i += 4) {

 sum1 += list[i];

 65

 sum2 += list[i+1];

 sum3 += list[i+2];

 sum4 += list[i+3];

}

sum1 = (sum1 + sum2) + (sum3 + sum4);

Here we have four dependency chains running in parallel and each dependency chain is
one fourths as long as the original one. The optimal number of accumulators is the latency
of the instruction (in this case floating point addition), divided by the reciprocal throughput.
See page 64 for examples of assembly code for loops with multiple accumulators.

It may not be possible to obtain the theoretical maximum throughput. The more parallel
dependency chains there are, the more difficult is it for the CPU to schedule and reorder the
µops optimally. It is particularly difficult if the dependency chains are branched or entangled.

Some microprocessors can execute four or five instructions per clock cycle. The more
instruction-level parallelism the microprocessor supports, the more important it is to avoid
long dependency chains.

Dependency chains occur not only in loops but also in linear code. Such dependency chains
can also be broken up. For example, y = a + b + c + d can be changed to

y = (a + b) + (c + d) so that the two parentheses can be calculated in parallel.

Sometimes there are different possible ways of implementing the same calculation with
different latencies. For example, you may have the choice between a branch and a
conditional move. The branch has the shortest latency, but the conditional move avoids the
risk of branch misprediction (see page 66). Which implementation is optimal depends on
how predictable the branch is and how long the dependency chain is.

A common way of setting a register to zero is XOR EAX,EAX or SUB EAX,EAX. Some

processors recognize that these instructions are independent of the prior value of the
register. Any instruction that uses the new value of the register will not have to wait for the
value prior to the XOR or SUB instruction to be ready. These instructions are useful for

breaking an unnecessary dependence. Most modern processors will recognize an XOR

instruction with two identical input registers as independent of the prior value for 32-bit and
64-bit general purpose registers, as well as vector registers of 128 bits or more.

You should not break a dependence by an 8-bit or 16-bit part of a register. For example
XOR AX,AX breaks a dependence on some processors, but not all. But XOR EAX,EAX is

sufficient for breaking the dependence on RAX in 64-bit mode.

The SBB EAX,EAX is of course dependent on the carry flag, even when it does not depend

on EAX.

You may also use these instructions for breaking dependences on the flags. For example,
rotate instructions have a false dependence on the flags in some Intel processors. This can
be removed in the following way:

; Example 9.4, Break dependence on flags

ror eax, 1

xor edx, edx ; Remove false dependence on the flags

ror ebx, 1

You cannot use CLC for breaking dependences on the carry flag.

 66

9.6 Jumps and calls

Jumps, branches, calls and returns do not necessarily add to the execution time of a code
because they will typically be executed in parallel with something else. The number of
jumps etc. should nevertheless be kept at a minimum in critical code for the following
reasons:

• The fetching of code after an unconditional jump or a taken conditional jump is
delayed by typically 1-3 clock cycles, depending on the microprocessor. The delay is
worst if the target is near the end of a 16-bytes or 32-bytes code fetch block (i.e.
before an address divisible by 16).

• The code cache becomes fragmented and less efficient when jumping around
between noncontiguous subroutines.

• Microprocessors with a µop cache or trace cache are likely to store multiple
instances of the same code in this cache when the code contains many jumps.

• The branch target buffer (BTB) can store only a limited number of jump target
addresses. A BTB miss will cost many clock cycles.

• Conditional jumps are predicted according to advanced branch prediction
mechanisms. Mispredictions are expensive, as explained below.

• On most processors, branches can interfere with each other in the global branch
pattern history table and the branch history register. One branch may therefore
reduce the prediction rate of other branches.

• Returns are predicted by the use of a return stack buffer, which can only hold a
limited number of return addresses, typically 16.

• Indirect jumps and indirect calls are poorly predicted on older processors.

All modern CPUs have an execution pipeline that contains stages for instruction prefetching,
decoding, register renaming, µop reordering and scheduling, execution, retirement, etc. The
number of stages in the pipeline range from 12 to 22, depending on the specific micro-
architecture. When a branch instruction is fed into the pipeline then the CPU does not know
for sure which instruction is the next one to fetch into the pipeline. It takes 12-22 more clock
cycles before the branch instruction is executed so that it is known with certainty which way
the branch goes. This uncertainty is likely to break the flow through the pipeline. Rather than
waiting 12 or more clock cycles for an answer, the CPU attempts to guess which way the
branch will go. The guess is based on the previous behavior of the branch. If the branch has
gone the same way the last several times then it is predicted that it will go the same way
this time. If the branch has alternated regularly between the two ways then it is predicted
that it will continue to alternate.

If the prediction is right then the CPU has saved a lot of time by loading the right branch into
the pipeline and started to decode and speculatively execute the instructions in the branch.
If the prediction was wrong then the mistake is discovered after several clock cycles and the
mistake has to be fixed by flushing the pipeline and discarding the results of the speculative
executions. The cost of a branch misprediction ranges from 12 to more than 50 clock
cycles, depending on the length of the pipeline and other details of the microarchitecture.
This cost is so high that very advanced algorithms have been implemented in order to refine
the branch prediction. These algorithms are explained in detail in manual 3: "The
microarchitecture of Intel, AMD and VIA CPUs".

In general, you can assume that branches are predicted correctly most of the time in these
cases:

 67

• If the branch always goes the same way.

• If the branch follows a simple repetitive pattern and is inside a loop with few or no
other branches.

• If the branch is correlated with a preceding branch.

• If the branch is a loop with a constant, small repeat count and there are few or no
conditional jumps inside the loop.

The worst case is a branch that goes either way approximately 50% of the time, does not
follow any regular pattern, and is not correlated with any preceding branch. Such a branch
will be mispredicted 50% of the time. This is so costly that the branch should be replaced by
conditional moves or a table lookup if possible.

In general, you should try to keep the number of poorly predicted branches at a minimum
and keep the number of branches inside a loop at a minimum. It may be useful to split up or
unroll a loop if this can reduce the number of branches inside the loop.

Indirect jumps and indirect calls are often poorly predicted. Older processors will simply
predict an indirect jump or call to go the same way as it did last time. Many newer
processors are able to recognize simple repetitive patterns for indirect jumps.

Returns are predicted by means of a so-called return stack buffer which is a first-in-last-out
buffer that mirrors the return addresses pushed on the stack. A return stack buffer with 16
entries can correctly predict all returns for subroutines at a nesting level up to 16. If the
subroutine nesting level is deeper than the size of the return stack buffer then the failure will
be seen at the outer nesting levels, not the presumably more critical inner nesting levels. A
return stack buffer size of 8 or more is therefore sufficient in most cases, except for deeply
nested recursive functions.

The return stack buffer will fail if there is a call without a matching return or a return without
a preceding call. It is therefore important to always match calls and returns. Do not jump out
of a subroutine by any other means than by a RET instruction, except in tail calls as

explained below. And do not use the RET instruction as an indirect jump. Far calls should be

matched with far returns.

Make conditional jumps most often not taken

The efficiency and throughput for not-taken branches is better than for taken branches on
most processors. Therefore, it is good to place the most frequent branch first:

; Example 9.5, Place most frequent branch first

Func1:

 cmp eax,567

 je L1

 ; frequent branch

 ret

L1: ; rare branch

 ret

Tail calls

It is possible to replace a call followed by a return by a jump:

; Example 9.6a, call/ret sequence (32-bit)

Func1:

 ...

 call Func2

 68

 ret

This can be changed to:

; Example 9.6b, call+ret replaced by jmp

Func1:

 ...

 jmp Func2 ; tail call

This modification does not conflict with the return stack buffer mechanism because the call
to Func1 is matched with the return from Func2. In systems with stack alignment, it is

necessary to restore the stack pointer before the jump:

; Example 9.7a, call/ret sequence (64-bit Windows or Linux)

Func1:

 sub rsp, 8 ; Align stack by 16

 ...

 call Func2 ; This call can be eliminated

 add rsp, 8

 ret

This can be changed to:

; Example 9.7b, call+ret replaced by jmp with stack aligned

Func1:

 sub rsp, 8

 ...

 add rsp, 8 ; Restore stack pointer before jump

 jmp Func2

Eliminating unconditional jumps

It is often possible to eliminate a jump by copying the code that it jumps to. The code that is
copied can typically be a loop epilog or function epilog. The following example is a function
with an if-else branch inside a loop:

; Example 9.8a, Function with jump that can be eliminated

FuncA:

 push ebp

 mov ebp, esp

 sub esp, StackSpaceNeeded

 lea edx, [EndOfSomeArray]

 xor eax, eax

Loop1: ; Loop starts here

 cmp [edx+eax*4], eax ; if-else

 je ElseBranch

 ... ; First branch

 jmp End_If

ElseBranch:

 ... ; Second branch

End_If:

 add eax, 1 ; Loop epilog

 jnz Loop1

 mov esp, ebp ; Function epilog

 pop ebp

 ret

The jump to End_If may be eliminated by duplicating the loop epilog:

; Example 9.8b, Loop epilog copied to eliminate jump

 69

FuncA:

 push ebp

 mov ebp, esp

 sub esp, StackSpaceNeeded

 lea edx, [EndOfSomeArray]

 xor eax, eax

Loop1: ; Loop starts here

 cmp [edx+eax*4], eax ; if-else

 je ElseBranch

 ... ; First branch

 add eax, 1 ; Loop epilog for first branch

 jnz Loop1

 jmp AfterLoop

ElseBranch:

 ... ; Second branch

 add eax, 1 ; Loop epilog for second branch

 jnz Loop1

AfterLoop:

 mov esp, ebp ; Function epilog

 pop ebp

 ret

In example 9.8b, the unconditional jump inside the loop has been eliminated by making two
copies of the loop epilog. The branch that is executed most often should come first because
the first branch is fastest. The unconditional jump to AfterLoop can also be eliminated. This

is done by copying the function epilog:

; Example 9.8b, Function epilog copied to eliminate jump

FuncA:

 push ebp

 mov ebp, esp

 sub esp, StackSpaceNeeded

 lea edx, [EndOfSomeArray]

 xor eax, eax

Loop1: ; Loop starts here

 cmp [edx+eax*4], eax ; if-else

 je ElseBranch

 ... ; First branch

 add eax, 1 ; Loop epilog for first branch

 jnz Loop1

 mov esp, ebp ; Function epilog 1

 pop ebp

 ret

ElseBranch:

 ... ; Second branch

 add eax, 1 ; Loop epilog for second branch

 jnz Loop1

 mov esp, ebp ; Function epilog 2

 pop ebp

 ret

The gain that is obtained by eliminating the jump to AfterLoop is less than the gain

obtained by eliminating the jump to End_If because it is outside the loop. But I have shown

it here to illustrate the general method of duplicating a function epilog.

 70

Replacing conditional jumps with conditional moves

The most important jumps to eliminate are conditional jumps, especially if they are poorly
predicted. Example:

// Example 9.9a. C++ branch to optimize

a = b > c ? d : e;

This can be implemented with either a conditional jump or a conditional move:

 ; Example 9.9b. Branch implemented with conditional jump

 mov eax, [b]

 cmp eax, [c]

 jng L1

 mov eax, [d]

 jmp L2

L1: mov eax, [e]

L2: mov [a], eax

 ; Example 9.9c. Branch implemented with conditional move

 mov eax, [b]

 cmp eax, [c]

 mov eax, [d]

 cmovng eax, [e]

 mov [a], eax

The advantage of a conditional move is that it avoids branch mispredictions. But it has the
disadvantage that it increases the length of a dependency chain, while a predicted branch
breaks the dependency chain. If the code in example 9.9c is part of a dependency chain
then the cmov instruction adds to the length of the chain. If the same code is implemented

with a conditional jump as in example 9.9b and if the branch is predicted correctly, then the
result does not have to wait for b and c to be ready. It only has to wait for either d or e,

whichever is chosen. This means that the dependency chain is broken by the predicted
branch, while the implementation with a conditional move has to wait for both b, c, d and e

to be available. If d and e are complicated expressions, then both have to be calculated

when the conditional move is used, while only one of them has to be calculated if a
conditional jump is used.

As a rule of thumb, we can say that a conditional jump is faster than a conditional move if
the code is part of a dependency chain and the prediction rate is better than 75%. A
conditional jump is also preferred if we can avoid a lengthy calculation of d or e when the

other operand is chosen.

Loop-carried dependency chains are particularly sensitive to the disadvantages of
conditional moves. For example, the code in example 12.14a on page 103 works more
efficiently with a branch inside the loop than with a conditional move, even if the branch is
poorly predicted. This is because the floating point conditional move adds to the loop-
carried dependency chain and because the implementation with a conditional move has to
calculate all the power*xp values, even when they are not used.

Another example of a loop-carried dependency chain is a binary search in a sorted list. If
the items to search for are randomly distributed over the entire list then the branch
prediction rate will be close to 50% and it will be faster to use conditional moves. But if the
items are often close to each other so that the prediction rate will be better, then it is more
efficient to use conditional jumps than conditional moves because the dependency chain is
broken every time a correct branch prediction is made.

It is also possible to do conditional moves in vector registers on an element-by-element
basis. See page 112ff for details. There are special vector instructions for getting the

 71

minimum or maximum of two numbers. It may be faster to use vector registers than integer
or floating point registers for finding minimums or maximums.

Replacing conditional jumps with conditional set instructions

If a conditional jump is used for setting a Boolean variable to 0 or 1 then it is often more
efficient to use the conditional set instruction. Example:

// Example 9.10a. Set a bool variable on some condition

int b, c;

bool a = b > c;

; Example 9.10b. Implementation with conditional set

mov eax, [b]

cmp eax, [c]

setg al

mov [a], al

The conditional set instruction writes only to 8-bit registers. If a 32-bit result is needed then
set the rest of the register to zero before the compare:

; Example 9.10c. Implementation with conditional set, 32 bits

mov eax, [b]

xor ebx, ebx ; zero register before cmp to avoid changing flags

cmp eax, [c]

setg bl

mov [a], ebx

If there is no vacant register then use movzx:

; Example 9.10d. Implementation with conditional set, 32 bits

mov eax, [b]

cmp eax, [c]

setg al

movzx eax, al

mov [a], eax

If a value of all ones is needed for true then use neg eax.

An implementation with conditional jumps may be faster than conditional set if the prediction
rate is good and the code is part of a long dependency chain, as explained in the previous
section (page 70).

Replacing conditional jumps with bit-manipulation instructions

It is sometimes possible to obtain the same effect as a branch by ingenious manipulation of
bits and flags. The carry flag is particularly useful for bit manipulation tricks:

; Example 9.11, Set carry flag if eax is zero:

cmp eax, 1

; Example 9.12, Set carry flag if eax is not zero:

neg eax

; Example 9.13, Increment eax if carry flag is set:

adc eax, 0

; Example 9.14, Copy carry flag to all bits of eax:

sbb eax, eax

; Example 9.15, Copy bits one by one from carry into a bit vector:

rcl eax, 1

 72

It is possible to calculate the absolute value of a signed integer without branching:

; Example 9.16, Calculate absolute value of eax

cdq ; Copy sign bit of eax to all bits of edx

xor eax, edx ; Invert all bits if negative

sub eax, edx ; Add 1 if negative

The following example finds the minimum of two unsigned numbers: if (b > a) b = a;

; Example 9.17a, Find minimum of eax and ebx (unsigned):

sub eax, ebx ; = a-b

sbb edx, edx ; = (b > a) ? 0xFFFFFFFF : 0

and edx, eax ; = (b > a) ? a-b : 0

add ebx, edx ; Result is in ebx

Or, for signed numbers, ignoring overflow:

; Example 9.17b, Find minimum of eax and ebx (signed):

sub eax, ebx ; Will not work if overflow here

cdq ; = (b > a) ? 0xFFFFFFFF : 0

and edx, eax ; = (b > a) ? a-b : 0

add ebx, edx ; Result is in ebx

The next example chooses between two numbers: if (a < 0) d = b; else d = c;

; Example 9.18a, Choose between two numbers

test eax, eax

mov edx, ecx

cmovs edx, ebx ; = (a < 0) ? b : c

Conditional moves are not very efficient on older Intel processors. Alternative implementa-
tions may be faster in some cases. The following example gives the same result as example
9.18a.

; Example 9.18b, Choose between two numbers without conditional move:

cdq ; = (a < 0) ? 0xFFFFFFFF : 0

xor ebx, ecx ; b ^ c = bits that differ between b and c

and edx, ebx ; = (a < 0) ? (b ^ c) : 0

xor edx, ecx ; = (a < 0) ? b : c

Example 9.18b may be faster than 9.18a on processors where conditional moves are
inefficient. Example 9.18b destroys the value of ebx.

Whether these tricks are faster than a conditional jump depends on the prediction rate, as
explained above.

10 Optimizing for size
The code cache can hold from 8 to 64 kb of code, as explained in chapter 11 page 81. If
there are problems keeping the critical inner loop of the code within the code cache, the µop
cache, or the loopback buffer, then you may consider reducing the size of the code.
Reducing the code size can also improve the decoding of instructions. Very small loops are
particularly fast because they can fit into a loopback buffer, or the decoder can reuse loaded
code cache lines.

You may even want to reduce the size of the code at the cost of reduced speed if speed is
not important.

 73

64-bit code does not need more bytes for addresses than 32-bit code because it can use
32-bit RIP-relative addresses. 64-bit code may be slightly bigger than 32-bit code because
of REX prefixes and other minor differences, but it may as well be smaller than 32-bit code
because the increased number of registers reduces the need for memory variables.

10.1 Choosing shorter instructions

Certain instructions have short forms. PUSH and POP instructions with an integer register take

only one byte. XCHG EAX,reg32 is also a single-byte instruction and thus takes less space

than a MOV instruction, but XCHG is slower than MOV. INC and DEC with a 32-bit register in 32-

bit mode. The short form of INC and DEC is not available in 64-bit mode.

The following instructions take one byte less when they use the accumulator than when they
use any other register: ADD, ADC, SUB, SBB, AND, OR, XOR, CMP, TEST with an immediate

operand without sign extension. This also applies to the MOV instruction with a memory

operand and no pointer register in 16 and 32 bit mode, but not in 64 bit mode. Examples:

 ; Example 10.1. Instruction sizes

 add eax,1000 is smaller than add ebx,1000

 mov eax,[mem] is smaller than mov ebx,[mem], except in 64 bit mode.

Instructions with pointers take one byte less when they have only a base pointer (except
ESP, RSP or R12) and a displacement than when they have a scaled index register, or both

base pointer and index register, or ESP, RSP or R12 as base pointer. Examples:

 ; Example 10.2. Instruction sizes

 mov eax,array[ebx] is smaller than mov eax,array[ebx*4]

 mov eax,[ebp+12] is smaller than mov eax,[esp+12]

Instructions with EBP, RBP or R13 as base pointer and no displacement and no index take

one byte more than with other registers:

 ; Example 10.3. Instruction sizes

 mov eax,[ebx] is smaller than mov eax,[ebp], but

 mov eax,[ebx+4] is same size as mov eax,[ebp+4].

Instructions with a scaled index pointer and no base pointer must have a four bytes
displacement, even when it is 0:

 ; Example 10.4. Instruction sizes

 lea eax,[ebx+ebx] is shorter than lea eax,[ebx*2].

Instructions in 64-bit mode need a REX prefix if at least one of the registers R8 - R15 or XMM8

- XMM15 are used. Instructions that use these registers are therefore one byte longer than

instructions that use other registers, unless a REX prefix is needed anyway for other
reasons:

 ; Example 10.5a. Instruction sizes (64 bit mode)

 mov eax,[rbx] is smaller than mov eax,[r8].

 ; Example 10.5b. Instruction sizes (64 bit mode)

 mov rax,[rbx] is same size as mov rax,[r8].

In example 10.5a, we can avoid a REX prefix by using register RBX instead of R8 as pointer.

But in example 10.5b, we need a REX prefix anyway for the 64-bit operand size, and the
instruction cannot have more than one REX prefix.

 74

Floating point calculations can be done either with the old x87 style instructions with floating
point stack registers ST(0)-ST(7) or the newer SSE style instructions with XMM registers.

The x87 style instructions are more compact than the latter, for example:

 ; Example 10.6. Floating point instruction sizes

 fadd st0, st1 ; 2 bytes

 addsd xmm0, xmm1 ; 4 bytes

The use of x87 style code may be advantageous even if it requires extra FXCH instructions.

There are only small differences in execution speed between the two types of floating point
instructions on current processors. However, it is likely that the x87 style instructions will be
considered obsolete and will be less efficient on future processors.

Processors supporting the AVX instruction set can code XMM instructions in two different
ways, with a VEX prefix or with the old prefixes. Sometimes the VEX version is shorter and
sometimes the old version is shorter. However, there is a severe performance penalty to
mixing XMM instructions without VEX prefix with instructions using YMM registers on most
Intel processors.

The AVX-512 instruction set uses a new 4-bytes prefix called EVEX. While the EVEX prefix
is one or two bytes longer then the VEX prefix, it allows a more efficient coding of memory
operands with pointer and offset. Memory operands with a 4-bytes offset can sometimes be
replaced by a 1-byte scaled offset when the EVEX prefix is used. Thereby the total
instruction length becomes smaller.

10.2 Using shorter constants and addresses

Many jump addresses, data addresses, and data constants can be expressed as sign-
extended 8-bit constants. This saves a lot of space. A sign-extended byte can only be used
if the value is within the interval from -128 to +127.

For jump addresses, this means that short jumps take two bytes of code, whereas jumps
beyond 127 bytes take 5 bytes if unconditional and 6 bytes if conditional.

Likewise, data addresses take less space if they can be expressed as a pointer and a
displacement between -128 and +127. The following example assumes that [mem1] and

[mem2] are static memory addresses in the data segment and that the distance between

them is less than 128 bytes:

; Example 10.7a, Static memory operands

mov ebx, [mem1] ; 6 bytes

add ebx, [mem2] ; 6 bytes

Reduce to:

; Example 10.7b, Replace addresses by pointer

mov eax, offset mem1 ; 5 bytes

mov ebx, [eax] ; 2 bytes

add ebx, [eax] + (mem2 - mem1) ; 3 bytes

In 64-bit mode you need to replace mov eax,offset mem1 with lea rax,[mem1], which

is one byte longer. The advantage of using a pointer obviously increases if you can use the
same pointer many times. Storing data on the stack and using EBP or ESP as pointer will

thus make the code smaller than if you use static memory locations and absolute
addresses, provided of course that the data are within +/-127 bytes of the pointer. Using
PUSH and POP to write and read temporary integer data is even shorter.

 75

Data constants may also take less space if they are between -128 and +127. Most
instructions with immediate operands have a short form where the operand is a sign-
extended single byte. Examples:

 ; Example 10.8, Sign-extended operands

 push 200 ; 5 bytes

 push 100 ; 2 bytes, sign extended

 add ebx, 128 ; 6 bytes

 sub ebx, -128 ; 3 bytes, sign extended

The only instructions with an immediate operand that do not have a short form with a sign-
extended 8-bit constant are MOV, TEST, CALL and RET. A TEST instruction with a 32-bit

immediate operand can be replaced with various shorter alternatives, depending on the
logic in case. Some examples:

 ; Example 10.9, Alternatives to test with 32-bit constant

 test eax, 8 ; 5 bytes

 test ebx, 8 ; 6 bytes

 test al, 8 ; 2 bytes

 test bl, 8 ; 3 bytes

 and ebx, 8 ; 3 bytes

 bt ebx, 3 ; 4 bytes (uses carry flag)

 cmp ebx, 8 ; 3 bytes

It is not recommended to use the versions with 16-bit constants in 32-bit or 64-bit modes,
such as TEST AX,800H because it will cause a penalty for decoding a length-changing

prefix on some processors, as explained in manual 3: "The microarchitecture of Intel, AMD
and VIA CPUs".

Shorter alternatives for MOV register,constant are often useful. Examples:

 ; Example 10.10, Loading constants into 32-bit registers

 mov eax, 0 ; 5 bytes

 xor eax, eax ; 2 bytes

 mov eax, 1 ; 5 bytes

 xor eax, eax / inc eax ; 3 bytes

 push 1 / pop eax ; 3 bytes

 mov eax, -1 ; 5 bytes

 or eax, -1 ; 3 bytes

You may also consider reducing the size of static data. Obviously, an array can be made
smaller by using a smaller data size for the elements. For example 16-bit integers instead of
32-bit integers if the data are sure to fit into the smaller data size. The code for accessing
16-bit integers is slightly bigger than for accessing 32-bit integers, but the increase in code
size is small compared to the decrease in data size for a large array. Instructions with 16-bit
immediate data operands should be avoided in 32-bit and 64-bit mode because of the
problem with decoding length-changing prefixes.

10.3 Reusing constants

If the same address or constant is used more than once then you may load it into a register.
A MOV with a 4-byte immediate operand may sometimes be replaced by an arithmetic

instruction if the value of the register before the MOV is known. Example:

 ; Example 10.11a, Loading 32-bit constants

 mov [mem1], 200 ; 10 bytes

 mov [mem2], 201 ; 10 bytes

 76

 mov eax, 100 ; 5 bytes

 mov ebx, 150 ; 5 bytes

Replace with:

 ; Example 10.11b, Reuse constants

 mov eax, 200 ; 5 bytes

 mov [mem1], eax ; 5 bytes

 inc eax ; 1 byte

 mov [mem2], eax ; 5 bytes

 sub eax, 101 ; 3 bytes

 lea ebx, [eax+50] ; 3 bytes

10.4 Constants in 64-bit mode

In 64-bit mode, there are three ways to move a constant into a 64-bit register: with a 64-bit
constant, with a 32-bit sign-extended constant, and with a 32-bit zero-extended constant:

 ; Example 10.12, Loading constants into 64-bit registers

 mov rax, 123456789abcdef0h ; 10 bytes (64-bit constant)

 mov rax, -100 ; 7 bytes (32-bit sign-extended)

 mov eax, 100 ; 5 bytes (32-bit zero-extended)

Some assemblers use the sign-extended version rather than the shorter zero-extended
version, even when the constant is within the range that fits into a zero-extended constant.
You can force the assembler to use the zero-extended version by specifying a 32-bit
destination register. Writes to a 32-bit register are always zero-extended into the 64-bit
register.

10.5 Addresses and pointers in 64-bit mode

64-bit code should preferably use 64-bit register size for base and index in addresses, and
32-bit register size for everything else. Example:

 ; Example 10.13, 64-bit versus 32-bit registers

 mov eax, [rbx + 4*rcx]

 inc rcx

Here, you can save one byte by changing inc rcx to inc ecx. This will work because the

value of the index register is certain to be less than 232. The base pointer however, may be
bigger than 232 in some systems so you cannot replace add rbx,4 by add ebx,4. Never

use 32-bit registers as base or index inside the square brackets in 64-bit mode.

The rule of using 64-bit registers inside the square brackets of an indirect address and 32-
bit registers everywhere else also applies to the LEA instruction. Examples:

 ; Example 10.14. LEA in 64-bit mode

 lea eax, [ebx + ecx] ; 4 bytes (needs address size prefix)

 lea eax, [rbx + rcx] ; 3 bytes (no prefix)

 lea rax, [ebx + ecx] ; 5 bytes (address size and REX prefix)

 lea rax, [rbx + rcx] ; 4 bytes (needs REX prefix)

The form with 32-bit destination and 64-bit address is preferred unless a 64-bit result is
needed. This version takes no more time to execute than the version with 64-bit destination.
The forms with address size prefix should never be used.

An array of 64-bit pointers in a 64-bit program can be made smaller by using 32-bit pointers
relative to the image base or to some reference point. This makes the array of pointers
smaller at the cost of making the code that uses the pointers bigger since it needs to add

 77

the image base. Whether this gives a net advantage depends on the size of the array.
Example:

 ; Example 10.15a. Jump-table in 64-bit mode

 section .data

 JumpTable DQ Label1, Label2, Label3, ..

 section .text

 mov eax, [n] ; Index

 lea rdx, [JumpTable] ; Address of jump table

 jmp near [rdx+rax*8] ; Jump to JumpTable[n]

Implementation with image-relative pointers is available in Windows only:

 ; Example 10.15b. Image-relative jump-table in 64-bit Windows

 ; This works only with MASM assembler

 section .data

 JumpTable DD imagerel(Label1),imagerel(Label2),imagerel(Label3),..

 extrn __ImageBase:byte

 section .text

 mov eax, [n] ; Index

 lea rdx, [__ImageBase] ; Image base

 mov eax, [rdx+rax*4+imagerel(JumpTable)] ; Load image rel. address

 add rax, rdx ; Add image base to address

 jmp rax ; Jump to computed address

Another possibility is to use the jump table itself as a reference point. This method is
commonly used by compilers for the Mac OS operating system, but it may be used in other
64-bit systems as well. Note that not all assemblers can make a relative reference from the
data section to the code section. This example works with the NASM assembler.

 ; Example 10.15c. Self-relative jump-table in 64-bit Mac

 section .data

 JumpTable: DD Label1-JumpTable, Label2-JumpTable, Label3-JumpTable

 section .text

 default rel

 mov eax, [n] ; Index

 lea rdx, [JumpTable] ; Table and reference point

 movsxd rax, [rdx + rax*4] ; Load address relative to table

 add rax, rdx ; Add table base to address

 jmp rax ; Jump to computed address

A simple alternative is to use 32-bit absolute pointers. This method can be used only if there
is certainty that all addresses are less than 231:

 ; Example 10.15d. 32-bit absolute jump table in 64-bit Linux

 ; Requires that addresses < 2^31

 section .data

 JumpTable DD Label1, Label2, Label3 ; 32-bit addresses

 section .text

 default rel

 mov eax, [n] ; Index

 mov eax, [JumpTable+rax*4] ; Load 32-bit address

 jmp rax ; Jump to zero-extended address

In example 10.15d, the address of JumpTable is a 32-bit relocatable address which is sign-

extended to 64 bits. This works if the address is less than 231. The addresses of Label1,

 78

etc., are zero-extended, so this will work if the addresses are less than 232. The method of
example 10.15d can be used if there is certainty that the image base plus the program size
is less than 231. This will work in application programs in Linux and BSD and in some cases
in Windows, but not in Mac OS X (see page 23).

It is even possible to replace the 64-bit or 32-bit pointers with 16-bit offsets relative to a
suitable reference point:

 ; Example 10.15d. 16-bit offsets to a reference point

 section .data

 ; 16 bit addresses relative to Label1:

 JumpTable: DW 0, Label2-Label1, Label3-Label1

 section .text

 default rel

 mov eax, [n] ; Index

 lea rdx, [JumpTable] ; Address of table (RIP-relative)

 movsx rax, word [rdx+rax*2] ; Sign-extend 16-bit offset

 lea rdx, [Label1] ; Use Label1 as reference point

 add rax, rdx ; Add offset to reference point

 jmp rax ; Jump to computed address

Example 10.15d uses Label1 as a reference point. It works only if all labels are within the

interval Label1  215. The table contains the 16-bit offsets which are sign-extended and

added to the reference point.

The examples above show different methods for storing code pointers. The same methods
can be used for data pointers. A pointer can be stored as a 64-bit absolute address, a 32-bit
relative address, a 32-bit absolute address, or an 8-bit or 16-bit offset relative to a suitable
reference point. The methods that use pointers relative to the image base or a reference
point are only worth the extra code if there are multiple pointers. This is typically the case in
large switch statements and in linked lists.

10.6 Making instructions longer for the sake of alignment

There are situations where it can be advantageous to reverse the advice of the previous
paragraphs in order to make instructions longer. Most important is the case where a loop
entry needs to be aligned (see p. 85). Rather than inserting NOP's to align the loop entry

label you may make the preceding instructions longer than their minimum lengths in such a
way that the loop entry becomes properly aligned. The longer versions of the instructions do
not take longer time to execute, so we can save the time it takes to execute the NOP's.

The assembler will normally choose the shortest possible form of an instruction. It is often
possible to choose a longer form of the same or an equivalent instruction. This can be done
in several ways.

Use general form instead of short form of an instruction

The short forms of INC, DEC, PUSH, POP, XCHG, ADD, MOV do not have a mod-reg-r/m byte (see

p. 25). The same instructions can be coded in the general form with a mod-reg-r/m byte.
Examples:

; Example 10.16. Making instructions longer

inc eax ; short form. 1 byte (in 32-bit mode only)

DB 0FFH, 0C0H ; long form of INC EAX, 2 bytes

push ebx ; short form. 1 byte

DB 0FFH, 0F3H ; long form of PUSH EBX, 2 bytes

 79

Use an equivalent instruction that is longer

Examples:

; Example 10.17. Making instructions longer

inc eax ; 1 byte (in 32-bit mode only)

add eax, 1 ; 3 bytes replacement for INC EAX

mov eax, ebx ; 2 bytes

lea eax, [ebx] ; can be any length from 2 to 8 bytes, see below

Use 4-bytes immediate operand

Instructions with a sign-extended 8-bit immediate operand can be replaced by the version
with a 32-bit immediate operand:

; Example 10.18. Making instructions longer

add ebx,1 ; 3 bytes. Uses sign-extended 8-bit operand

DB 0x81, 0xC3

DD 1 ; 6 bytes. add ebx,1 with 32-bit operand

Add zero displacement to pointer

An instruction with a pointer can have a displacement of 1 or 4 bytes in 32-bit or 64-bit
mode (1 or 2 bytes in 16-bit mode). A dummy displacement of zero can be used for making
the instruction longer:

; Example 10.19. Making instructions longer

mov eax,[ebx] ; 2 bytes

; mov eax,[ebx+00]; 3 bytes

DB 0x8B, 0x43, 0x00 ; Add 1-byte displacement

; mov eax,[ebx+00000000]; 6 bytes

DB 0x8B, 0x83, 0, 0, 0, 0 ; Add 4-bytes displacement

The same can be done with LEA EAX,[EBX+0] as a replacement for MOV EAX,EBX.

Use SIB byte

An instruction with a memory operand can have a SIB byte (see p. 25). A SIB byte can be
added to an instruction that doesn't already have one to make the instruction one byte
longer. A SIB byte cannot be used in 16-bit mode or in 64-bit mode with a RIP-relative
address. Example:

; Example 10.20. Making instructions longer

mov eax, [ebx] ; Length = 2 bytes

DB 0x8B, 0x04, 0x23 ; Same with SIB byte. Length = 3 bytes

DB 0x8BH, 0x44H, 0x23, 0 ; With SIB byte and displacement. 4 bytes

Use prefixes

An easy way to make an instruction longer is to add unnecessary prefixes. All instructions
with a memory operand can have a segment prefix. The DS segment prefix is rarely
needed, but it can be added without changing the meaning of the instruction:

; Example 10.21. Making instructions longer

DB 3EH ; DS segment prefix

mov eax,[ebx] ; prefix + instruction = 3 bytes

All instructions with a memory operand can have a segment prefix, including LEA. It is

actually possible to add a segment prefix even to instructions without a memory operand.
Such meaningless prefixes are simply ignored. But there is no absolute guarantee that the
meaningless prefix will not have some meaning on future processors. For example, the

 80

Pentium 4 used segment prefixes on branch instructions as branch prediction hints. The
probability is very low, I would say, that segment prefixes will have any adverse effect on
future processors for instructions that could have a memory operand, i.e. instructions with a
mod-reg-r/m byte.

CS, DS, ES and SS segment prefixes have no effect in 64-bit mode, but they are still
allowed, according to AMD64 Architecture Programmer’s Manual, Volume 3: General-
Purpose and System Instructions, 2003.

In 64-bit mode, you can also use an empty REX prefix to make instructions longer:

; Example 10.22. Making instructions longer

DB 40H ; empty REX prefix

mov eax,[rbx] ; prefix + instruction = 3 bytes

Empty REX prefixes can safely be applied to almost all instructions in 64-bit mode that do
not already have a REX prefix, except instructions that use AH, BH, CH or DH. REX prefixes

cannot be used in 32-bit or 16-bit mode. A REX prefix must come after any other prefixes,
and no instruction can have more than one REX prefix.

AMD's optimization manual recommends the use of up to three operand size prefixes (66H)
as fillers. But this prefix can only be used on instructions that are not affected by this prefix,
i.e. NOP and x87 floating point instructions. Segment prefixes are more widely applicable and

have the same effect – or rather lack of effect.

It is possible to add multiple identical prefixes to any instruction as long as the total
instruction length does not exceed 15. For example, you can have an instruction with two or
three DS segment prefixes. But instructions with multiple prefixes take extra time to decode
on many processors. It is not a good idea to use address size prefixes as fillers because
this may slow down instruction decoding.

Do not place dummy prefixes immediately before a jump label to align it:

; Example 10.23. Wrong way of making instructions longer

L1: mov ecx,1000

 DB ox3E ; DS segment prefix. Wrong!

L2: mov eax,[esi] ; Executed both with and without prefix

In this example, the MOV EAX,[ESI] instruction will be decoded with a DS segment prefix

when we come from L1, but without the prefix when we come from L2. This works in

principle, but some microprocessors remember where the instruction boundaries are, and
such processors will be confused when the same instruction begins at two different
locations. There may be a performance penalty for this.

Processors supporting the AVX instruction set use VEX prefixes, which are 2 or 3 bytes
long. A 2-bytes VEX prefix can always be replaced by a 3-bytes VEX prefix. A VEX prefix
can be preceded by segment prefixes but not by any other prefixes. No other prefix is
allowed after the VEX prefix. Most instructions using XMM or YMM registers can have a
VEX prefix. Do not mix YMM vector instructions with VEX prefix and XMM instructions
without VEX prefix (see chapter 13.1). A few newer instructions on general purpose
registers also use VEX prefix.

The AVX512 instruction set uses a 4-bytes prefix names EVEX. Instructions may be made
longer by replacing a VEX prefix by an EVEX prefix when AVX512VL is supported.

It is recommended to check hand-coded instructions with a debugger or disassembler to
make sure they are correct.

 81

10.7 Using multi-byte NOPs for alignment

The multi-byte NOP instruction has the opcode 0F 1F + a dummy memory operand. The

length of the multi-byte NOP instruction can be adjusted by optionally adding 1 or 4 bytes of

displacement and a SIB byte to the dummy memory operand and by adding one or more
66H prefixes. An excessive number of prefixes can cause delay on older microprocessors,
but at least two prefixes is acceptable on most processors. NOPs of any length up to 10
bytes can be constructed in this way with no more than two prefixes. If the processor can
handle multiple prefixes without penalty then the length can be up to 15 bytes.

The multi-byte NOP is more efficient than the commonly used pseudo-NOPs such as MOV

EAX,EAX or LEA RAX,[RAX+0]. The multi-byte NOP instruction is supported on all Intel P6

family processors and later, as well as AMD Athlon, K7 and later, i.e. almost all processors
that support conditional moves.

11 Optimizing memory access
Reading from the level-1 cache takes approximately 3 clock cycles. Reading from the level-
2 cache takes in the order of magnitude of 10 clock cycles. Reading from main memory
takes in the order of magnitude of 100 clock cycles. The access time is even longer if a
DRAM page boundary is crossed, and extremely long if the memory area has been
swapped to disk. I cannot give exact access times here because it depends on the
hardware configuration. The figures keep changing thanks to the fast technological
development.

However, it is obvious from these numbers that caching of code and data is extremely
important for performance. If the code has many cache misses, and if each cache miss
costs more than a hundred clock cycles, then this can be a very serious bottleneck for the
performance.

More advice on how to organize data for optimal caching are given in manual 1: "Optimizing
software in C++". Processor-specific details are given in manual 3: "The microarchitecture of
Intel, AMD and VIA CPUs" and in Intel's and AMD's software optimization manuals.

11.1 How caching works

A cache is a means of temporary storage that is closer to the microprocessor than the main
memory. Data and code that is used often, or expected to be used soon, is stored in a
cache so that it is accessed faster. Different microprocessors have one, two, or three levels
of cache. The level-1 cache is close to the microprocessor kernel and is accessed in just a
few clock cycles. A bigger level-2 cache is placed on the same chip or at least in the same
housing.

The level-1 data cache in the Intel Skylake processor, for example, can contain 32 kb of
data. It is organized as 512 lines of 64 bytes each. The cache is 8-way set-associative. This
means that the data from a particular memory address cannot be assigned to an arbitrary
cache line, but only to one of eight possible lines. The line length in this example is 64, so
each line must be aligned to an address divisible by 64. The least significant 6 bits, i.e. bit 0
- 5, of the memory address are used for addressing a byte within the 64 bytes of the cache
line. As each set comprises 8 lines, there will be 512 / 8 = 64 different sets. The next six
bits, i.e. bits 6 - 11, of a memory address will therefore select between these 64 sets. The
remaining bits can have any value. The conclusion of this mathematical exercise is that if
bits 6 - 11 of two memory addresses are equal, then they will be cached in the same set of
cache lines. The 64-byte memory blocks that contend for the same set of cache lines are
spaced 212 = 4096 bytes apart. No more than eight such addresses can be cached at the
same time.

 82

The cache sizes, cache line sizes, and set associativity on different microprocessors are
described in manual 3: "The microarchitecture of Intel, AMD and VIA CPUs". The
performance penalty for level-1 cache line contention can be quite considerable on older
microprocessors, but on newer processors we are losing only a few clock cycles because
the data are likely to be prefetched from the level-2 cache, which is accessed quite fast
through a full-speed 256 bit data bus.

The cache lines are always aligned to physical addresses divisible by the cache line size
(typically 64 bytes). When we have read a byte at an address divisible by 64, then the next
63 bytes will be cached as well, and can be read or written to at almost no extra cost. We
can take advantage of this by arranging data items that are used near each other together
into aligned blocks of 64 bytes of memory.

The level-1 code cache works in the same way as the data cache, except on processors
with a trace cache. The level-2 cache is usually shared between code and data.

11.2 Trace cache

The old Intel processors with the NetBurst microarchitecture (Pentium 4) had a trace cache
instead of a code cache. The trace cache stores the code after it has been translated to
micro-operations (µops) while a normal code cache stores the raw code without translation.
The trace cache removes the bottleneck of instruction decoding and attempts to store the
code in the order in which it is executed rather than the order in which it occurs in memory.
The main disadvantage of a trace cache is that the code takes more space in a trace cache
than in a code cache. Later Intel processors do not have a trace cache, but possibly a µop
cache.

11.3 µop cache

Intel microprocessors since Sandy Bridge, and AMD processors since Zen 1, have a
traditional code cache before the decoders and a µop cache after the decoders. The µop
cache is a big advantage because instruction decoding is often a bottleneck. The maximum
capacity of the µop cache is 1536 µops in Intel Skylake and later processors, 2048 µops in
AMD Zen 1, and 4096 µops in AMD Zen 2 - 3. The µop cache is such a critical resource that
the programmer should economize its use and make sure the critical part of the code fits
into the µop cache. Avoid unnecessary loop unrolling.

Later Intel processors also have a small loopback buffer which can store the last 30 - 60
µops. A tiny loop that fits into the loopback buffer will run particularly fast if there are no
other bottlenecks.

Older AMD processors have instruction boundaries marked in the code cache. This relieves
the critical bottleneck of instruction length decoding and can therefore be seen as an
alternative to a µop cache. I do not know why this technique is rarely used in Intel
processors.

11.4 Alignment of data

All data in RAM should be aligned at addresses divisible by a power of 2 according to this
scheme:

Operand size Alignment

1 (byte) 1

2 (word) 2

4 (dword) 4

6 (fword) 8

 83

8 (qword) 8

10 (tbyte) 16

16 (oword, xmmword) 16

32 (ymmword) 32

64 (zmmword) 64

Table 11.1. Preferred data alignment

 The following example illustrates alignment of static data.

; Example 11.1, alignment of static data

section .data align=16

A: DQ 0, 0 ; A is aligned by 16

B: times 32 DB 0

C: DD 0

D: DW 0

ALIGN 16 ; E must be aligned by 16

E: DQ 0, 0

section .text

 default rel

 movdqa xmm0, [A]

 movdqa [E], xmm0

In the above example, A, B and C all start at addresses divisible by 16. D starts at an address

divisible by 4, which is more than sufficient because it only needs to be aligned by 2. An
alignment directive must be inserted before E because the address after D is not divisible by

16 as required by the MOVDQA instruction. Alternatively, E could be placed after A or B to

make it aligned.

Some microprocessors have a penalty of several clock cycles when accessing misaligned
data that cross a cache line boundary.

Most XMM instructions without VEX prefix that read or write 16-byte memory operands
require that the operand is aligned by 16. Instructions that accept unaligned 16-byte
operands can be quite inefficient on older processors. However, this restriction is largely
relieved with the AVX and later instruction sets. AVX instructions do not require alignment of
memory operands, except for the explicitly aligned instructions. Processors that support the
AVX instruction set generally handle misaligned memory operands very efficiently.

Aligning data stored on the stack can be done by rounding down the value of the stack
pointer. The old value of the stack pointer must of course be restored before returning. A
function with aligned local data typically look like this:

; Example 11.2a, Explicit alignment of stack (64-bit Windows)

FuncWithAlign:

 push rbp ; Prolog code

 mov rbp, rsp ; Save value of stack pointer

 sub rsp, LocalSpace ; Allocate space for local data

 and rsp, -32 ; Align RSP by 32

 mov eax, [rbp+8] ; Function parameter = array

 vmovdqu ymm0,[rax] ; Load from unaligned array

 vmovdqa [rsp],ymm0 ; Store in aligned space

 call SomeOtherFunction ; Call some other function

 ...

 mov rsp, rbp ; Epilog code. Restore rsp

 pop rbp ; Restore rbp

 ret

 84

This function uses RBP to address function parameters, and RSP to address aligned local

data. RSP is rounded down to the nearest value divisible by 32 simply by AND'ing it with -32.

You can align the stack by any power of 2 by AND'ing the stack pointer with the negative

value.

All 64-bit operating systems, and some 32-bit operating systems (Mac OS, optional in Linux)
keep the stack aligned by 16 at all CALL instructions. This eliminates the need for the AND

instruction and the frame pointer. It is necessary to propagate this alignment from one CALL

instruction to the next by proper adjustment of the stack pointer in each function:

; Example 11.2b, Propagate stack alignment (32-bit Linux)

FuncWithAlign:

 sub rsp, 24 ; Allocate space for local data

 mov rax, [rsp+32] ; Function parameter = array

 movdqu xmm0,[rax] ; Load from unaligned array

 movdqa [rsp],xmm0 ; Store in aligned space

 call SomeOtherFunction ; This call must be aligned

 ...

 retFuncWithAlign ENDP

In example 11.2b we are relying on the fact that the stack pointer is aligned by 16 before the
call to FuncWithAlign. The CALL FuncWithAlign instruction (not shown here) has pushed

the return address on the stack, whereby 8 is subtracted from the stack pointer. We have to
subtract another 8 from the stack pointer before it is aligned by 16 again. The 8 is not
enough for the local variable that needs 16 bytes so we have to subtract 24 to keep the
stack pointer aligned by 16. 8 for the return address + 24 = 32, which is divisible by 16.
Remember to include any PUSH instructions in the calculation. If, for example, there had

been one PUSH instruction in the function prolog then we would subtract 16 or 32 from RSP to

keep it aligned by 16. Example 11.2b needs to align the stack for two reasons. The MOVDQA

instruction needs an aligned operand, and the CALL SomeOtherFunction needs to be

aligned in order to propagate the correct stack alignment to SomeOtherFunction.

Alignment issues are also important when mixing C++ and assembly language. Consider
this C++ structure:

// Example 11.3a, C++ structure

struct abcd {

 unsigned char a; // takes 1 byte storage

 int b; // 4 bytes storage

 short int c; // 2 bytes storage

 double d; // 8 bytes storage

} x;

Most compilers (but not all) will insert three empty bytes between a and b, and six empty

bytes between c and d in order to give each element its natural alignment. You may change

the structure definition to:

// Example 11.3b, C++ structure

struct abcd {

 double d; // 8 bytes storage

 int b; // 4 bytes storage

 short int c; // 2 bytes storage

 unsigned char a; // 1 byte storage

 char unused[1]; // fill up to 16 bytes

} x;

This has several advantages: The implementation is identical on compilers with and without
automatic alignment, the structure is easily translated to assembly, all members are properly
aligned, and there are fewer unused bytes. The extra unused character in the end makes
sure that all elements in an array of structures are properly aligned.

 85

See page 149 for how to move unaligned blocks of data efficiently.

11.5 Alignment of code

Most microprocessors fetch code in aligned 16-byte or 32-byte blocks. If an important
subroutine entry or jump label happens to be near the end of a 16-byte block then the
microprocessor will only get a few useful bytes of code when fetching that block of code. It
may have to fetch the next 16 bytes too before it can decode the first instructions after the
label. This can be avoided by aligning important subroutine entries and loop entries by 16.
Aligning by 8 will assure that at least 8 bytes of code can be loaded with the first instruction
fetch, which may be sufficient if the instructions are small. We may align subroutine entries
by the cache line size (typically 64 bytes) if the subroutine is part of a critical hot spot and
the preceding code is unlikely to be executed in the same context.

A disadvantage of code alignment is that some cache space is lost to empty spaces before
the aligned code entries.

In most cases, the effect of code alignment is minimal. My recommendation is to align code
only in the most critical cases like critical subroutines and critical innermost loops.

Aligning a subroutine entry is as simple as putting as many NOP's as needed before the

subroutine entry to make the address divisible by 8, 16, 32 or 64, as desired. The assembler
does this with the ALIGN directive. The NOP's that are inserted will not slow down the

performance because they are never executed.

It is more problematic to align a loop entry because the preceding code is also executed. It
may require up to 15 NOP's to align a loop entry by 16. These NOP's will be executed before

the loop is entered and this will cost processor time. Some assemblers are using pseudo-
NOPs such as MOV RAX,RAX and LEA RBX,[RBX+0] as fillers. This has the disadvantage

that it has a false dependence on the register, and it uses execution resources. It is better to
use the multi-byte NOP instruction which can be adjusted to the desired length.

An alternative way of aligning a loop entry is to code the preceding instructions in ways that
are longer than necessary. In most cases, this will not add to the execution time, but
possibly to the instruction fetch time. See page 78 for details on how to code instructions in
longer versions.

The most efficient way to align an innermost loop is to move the preceding subroutine entry.
The following example shows how to do this:

; Example 11.4, Aligning loop entry. NASM assembler

section .text

align 16

; calculate where to place innerfunction in order to align innerloop:

times -(innerloop - innerfunction) % 16 nop

innerfunction: ; This address will be adjusted

 mov rax, [rsp+8] ; array

 mov ecx, 0x10000 ; size of array

 add rax, rcx ; end of array

 xor edx, edx ; sum

 neg rcx ; negative index

innerloop: ; This loop entry will be aligned by 16

 add edx, [rax+rcx] ; calculate sum of array elements

 inc rcx

 jnz innerloop

 ret

 86

This code will adjust the start address of the function to such a value that the loop inside the
function is aligned by 16. This works with the NASM assembler, but other assemblers may
not be able to do the necessary calculations with forward references.

The cost of misaligning innerfunction is negligible compared to the gain by aligning

innerloop because the latter label is jumped to 0x4000 times as often.

11.6 Organizing data for improved caching

The caching of data works best if critical data are contained in a small contiguous area of
memory. The best place to store critical data is on the stack. The stack space that is
allocated by a subroutine is released when the subroutine returns. The same stack space is
then reused by the next subroutine that is called. Reusing the same memory area gives the
optimal caching. Variables should therefore be stored on the stack rather than in the data
segment when possible.

Floating point constants are typically stored in the data segment. This is a problem because
it is difficult to keep the constants used by different subroutines contiguous. An alternative is
to store the constants in the code. In 64-bit mode it is possible to load a double precision
constant via an integer register to avoid using the data segment. Example:

; Example 11.5a. Loading double constant from data segment

section .data

C1 DQ SomeConstant

section .text

movsd xmm0, C1

This can be changed to:

; Example 11.5b. Loading double constant from register (64-bit mode)

section .text

mov rax, SomeConstant

movq xmm0, rax ; Some assemblers use 'movd' for this instruction

See page 123 for various methods of generating constants without loading data from
memory. This is advantageous if data cache misses are expected, but not if data caching is
efficient.

Constant tables are typically stored in the data segment. It may be advantageous to copy
such a table from the data segment to the stack outside the innermost loop if this can
improve caching inside the loop.

Static variables are variables that are preserved from one function call to the next. Such
variables are typically stored in the data segment. It may be a better alternative to
encapsulate the function together with its data in a C++ class. The class may be declared in
the C++ part of the code even when the member function is coded in assembly.

Data structures that are too large for the data cache should preferably be accessed in a
linear, forward way for optimal prefetching and caching. Non-sequential access can cause
cache line contentions if the stride is a high power of 2. Manual 1: "Optimizing software in
C++" contains examples of how to avoid access strides that are high powers of 2.

11.7 Organizing code for improved caching

The caching of code works best if the critical part of the code is contained within a
contiguous area of memory no bigger than the code cache. Avoid scattering critical

 87

subroutines around at random memory addresses. Rarely accessed code such as error
handling routines should be kept separate from the critical hot spot code.

It may be useful to split the code segment into different segments for different parts of the
code. For example, you may make a hot code segment for the code that is executed most
often and a cold code segment for code that is not speed-critical.

Alternatively, you may control the order in which modules are linked, so that modules that
are used in the same part of the program are linked at addresses near each other.

Dynamic linking of function libraries (DLL's or shared objects) makes code caching less
efficient. Dynamic link libraries are typically loaded at round memory addresses. This can
cause cache contentions because the distances between multiple DLL's are divisible by
high powers of 2.

11.8 Cache control instructions

Memory writes are more expensive than reads when cache misses occur in a write-back
cache. A whole cache line has to be read from memory, modified, and written back in case
of a cache miss. This can be avoided by using the non-temporal write instructions MOVNTI,

MOVNTQ, MOVNTDQ, MOVNTPD, MOVNTPS. These instructions should be used when writing to a

memory location that is unlikely to be cached and unlikely to be read from again before the
would-be cache line is evicted. As a rule of thumb, it can be recommended to use non-
temporal writes only when writing a memory block that is bigger than half the size of the
largest-level cache.

Explicit data prefetching with the PREFETCH instructions can sometimes improve cache

performance, but in most cases the automatic prefetching is more efficient.

12 Loops
The critical hot spot of a CPU-intensive program is almost always a loop. The clock
frequency of modern computers is so high that even the most time-consuming instructions,
cache misses and inefficient exceptions are finished in a fraction of a microsecond. The
delay caused by inefficient code is only noticeable when repeated millions of times. Such
high repeat counts are likely to be seen only in the innermost level of a series of nested
loops. The things that can be done to improve the performance of loops is discussed in this
chapter.

12.1 Minimize loop overhead

The loop overhead is the instructions needed for jumping back to the beginning of the loop
and to determine when to exit the loop. Optimizing these instructions is a fairly general
technique that can be applied in many situations. Optimizing the loop overhead is not
needed, however, if some other bottleneck is limiting the speed. See page 91ff for a
description of possible bottlenecks in a loop.

A typical loop in C++ may look like this:

// Example 12.1a. Typical for-loop in C++

for (int i = 0; i < n; i++) {

 // (loop body)

}

Without optimization, the assembly implementation will look like this:

 88

; Example 12.1b. For-loop, not optimized

 mov ecx, n ; Load n

 xor eax, eax ; i = 0

LoopTop:

 cmp eax, ecx ; i < n

 jge LoopEnd ; Exit when i >= n

 ; (loop body) ; Loop body goes here

 add eax, 1 ; i++

 jmp LoopTop ; Jump back

LoopEnd:

It may be unwise to use the inc instruction for adding 1 to the loop counter. The inc

instruction has a problem with writing to only part of the flags register, which makes it less

efficient than the add instruction on some older Intel processors and may cause false

dependences on other processors.

The most important problem with the loop in example 12.1b is that there are two jump
instructions. We can eliminate one jump from the loop by putting the branch instruction in
the end:

; Example 12.1c. For-loop with branch in the end

 mov ecx, n ; Load n

 test ecx, ecx ; Test n

 jng LoopEnd ; Skip if n <= 0

 xor eax, eax ; i = 0

LoopTop:

 ; (loop body) ; Loop body goes here

 add eax, 1 ; i++

 cmp eax, ecx ; i < n

 jl LoopTop ; Loop back if i < n

LoopEnd:

Now we have got rid of the unconditional jump instruction in the loop by putting the loop exit
branch in the end. We have to put an extra check before the loop to cover the case where
the loop should run zero times. Without this check, the loop would run one time when n = 0.

The method of putting the loop exit branch in the end can even be used for complicated
loop structures that have the exit condition in the middle. Consider a C++ loop with the exit
condition in the middle:

// Example 12.2a. C++ loop with exit in the middle

int i = 0;

while (true) {

 FuncA(); // Upper loop body

 if (++i >= n) break; // Exit condition here

 FuncB(); // Lower loop body

}

This can be implemented in assembly by reorganizing the loop so that the exit comes in the
end and the entry comes in the middle:

; Example 12.2b. Assembly loop with entry in the middle

 xor eax, eax ; i = 0

 jmp LoopEntry ; Jump into middle of loop

LoopTop:

 call FuncB ; Lower loop body comes first

LoopEntry:

 call FuncA ; Upper loop body comes last

 add eax, 1

 cmp eax, n

 jge LoopTop ; Exit condition in the end

 89

The cmp instruction in example 12.1c and 12.2b can be eliminated if the counter ends at

zero because we can rely on the add instruction for setting the zero flag. This can be done

by counting down from n to zero rather counting up from zero to n:

; Example 12.3. Loop with counting down

 mov ecx, n ; Load n

 test ecx, ecx ; Test n

 jng LoopEnd ; Skip if n <= 0

LoopTop:

 ; (loop body) ; Loop body goes here

 sub ecx, 1 ; n--

 jnz LoopTop ; Loop back if not zero

LoopEnd:

Now the loop overhead is reduced to just two instructions, which is the best possible. The
jecxz and loop instructions should be avoided because they are less efficient.

The solution in example 12.3 is not good if i is needed inside the loop, for example for an

array index. The following example adds 1 to all elements in an integer array:

; Example 12.4a. For-loop with array

section .text

default rel

 mov ecx, n ; Load n

 test ecx, ecx ; Test n

 jng LoopEnd ; Skip if n <= 0

 xor eax, eax ; i = 0

 lea rsi, [Array] ; Address of an array

LoopTop:

 ; Loop body: Add 1 to all elements in Array:

 add dword [rsi+4*rax], 1

 add eax, 1 ; i++

 cmp eax, ecx ; i < n

 jl LoopTop ; Loop back if i < n

LoopEnd:

The address of the start of the array is in rsi and the index in rax. The index is multiplied

by 4 in the address calculation because the size of each array element is 4 bytes.

It is possible to modify example 12.4a to make it count down rather than up, but the data
cache is optimized for accessing data forwards, not backwards. Therefore it is better to
count up through negative values from -n to zero. This is possible by making a pointer to

the end of the array and using a negative offset from the end of the array:

; Example 12.4b. For-loop with negative index from end of array

section .text

default rel

 mov ecx, n ; Load n

 lea rsi, [Array] ; Address of array

 lea rsi, [rsi+4*rcx] ; Point to end of array

 neg rcx ; i = -n

 jnl LoopEnd ; Skip if (-n) >= 0

LoopTop:

 ; Loop body: Add 1 to all elements in Array:

 add dword [rsi+4*rcx], 1

 add rcx, 1 ; i++

 js LoopTop ; Loop back if i < 0

LoopEnd:

A slightly different solution is to multiply n by 4 and count from -4*n to zero:

 90

; Example 12.4c. For-loop with neg. index multiplied by element size

section .text

default rel

 mov ecx, n ; Load n

 shl ecx, 2 ; n * 4

 jng LoopEnd ; Skip if (4*n) <= 0

 lea rsi, [Array] ; Address of array

 add rsi, rcx ; Point to end of array

 neg rcx ; i = -4*n

LoopTop:

 ; Loop body: Add 1 to all elements in Array:

 add dword [rsi+rcx], 1

 add rcx, 4 ; i += 4

 js LoopTop ; Loop back if i < 0

LoopEnd:

There is no significant difference in speed between example 12.4b and 12.4c, but the latter
method is useful if the size of the array elements is not 1, 2, 4 or 8 so that we cannot use
the scaled index addressing.

The loop counter should always be an integer because floating point compare instructions
are less efficient than integer compare instructions. Some loops have a floating point exit
condition by nature. A well-known example is a Taylor expansion which is ended when the
terms become sufficiently small. It may be useful in such cases to always use the worst-
case maximum repeat count. The cost of repeating the loop more times than necessary is
often less than what is saved by avoiding the calculation of the exit condition in the loop and
using an integer counter as loop control. A further advantage of this method is that the loop
exit branch becomes more predictable. Even when the loop exit branch is mispredicted, the
cost of the misprediction is smaller with an integer counter because the integer instructions
are likely to be executed way ahead of the slower floating point instructions so that the
misprediction can be resolved much earlier.

12.2 Induction variables

Early compilers would often calculate an expression inside a loop from the value in the
previous iteration. For example, if the floating point value of the loop counter is needed for
some other purpose, then it may be useful to have both an integer counter and a floating
point counter. Consider the example of a loop that makes a sine table:

// Example 12.5a. C++ loop to make sine table

double Table[100]; int i;

for (i = 0; i < 100; i++) Table[i] = sin(0.01 * i);

This can be changed to:

// Example 12.5b. C++ loop to make sine table

double Table[100], x; int i;

for (i = 0, x = 0.; i < 100; i++, x += 0.01) Table[i] = sin(x);

However, induction variables are generally not efficient on modern microprocessors
because they involve a loop-carried dependency chain (see below) and they make
vectorization more difficult.

12.3 Move loop-invariant code

The calculation of any expression that does not change inside the loop should be moved out
of the loop.

 91

The same applies to if-else branches with a condition that does not change inside the loop.
Such a branch can be avoided by making two loops, one for each branch, and making a
branch that chooses between the two loops.

12.4 Find the bottlenecks

There are a number of possible bottlenecks that can limit the performance of a loop. The
most likely bottlenecks are:

• Cache misses and cache contentions

• Loop-carried dependency chains

• Instruction fetching

• Instruction decoding

• Instruction retirement

• Execution port throughput

• Execution unit throughput

• Suboptimal reordering and scheduling of µops

• Branch mispredictions

• Floating point exceptions and subnormal operands

If one particular bottleneck is limiting the performance then it does not help to optimize
anything else. It is therefore very important to analyze the loop carefully in order to identify
which bottleneck is the limiting factor. Only when the narrowest bottleneck has successfully
been removed does it make sense to look at the next bottleneck. The various bottlenecks
are discussed in the following sections. All these details are processor-specific. See manual
3: "The microarchitecture of Intel, AMD and VIA CPUs" for explanation of the processor-
specific details mentioned below.

Sometimes, a lot of experimentation is needed in order to find and fix the limiting bottleneck.
Remember that a solution found by experimentation is CPU-specific and not certain to be
optimal on CPUs with a different microarchitecture.

12.5 Instruction fetch, decoding and retirement in a loop

The details about how to optimize instruction fetching, decoding, retirement, etc. is
processor-specific, as mentioned on page 63.

If code fetching is a bottleneck then it is necessary to align the loop entry by 16 and reduce
instruction sizes in order to minimize the number of 16-byte boundaries in the loop.

If instruction decoding is a bottleneck then it is necessary to observe the CPU-specific rules
about decoding patterns. Avoid complex instructions that generate more than two µops,
such as LOOP, JECXZ, LODS, STOS, etc.

Jumps and calls inside the loop should be avoided because it delays code fetching.
Subroutines that are called inside the loop should be inlined if possible.

 92

Branches inside the loop should be avoided if possible because they interfere with the
prediction of the loop exit branch. However, branches should not be replaced by conditional
moves if this increases the length of a loop-carried dependency chain.

12.6 Distribute µops evenly between execution units

Manual 4: "Instruction tables" contains tables of how many µops each instruction generates
and which execution port each µop goes to. This information is CPU-specific, of course. It is
necessary to calculate how many µops the loop generates in total and how many of these
µops go to each execution port and each execution unit.

The time it takes to retire all instructions in the loop is the total number of µops divided by
the retirement rate. The retirement rate is at least 4 µops per clock cycle for Intel Core2 and
later processors. The calculated retirement time is the minimum execution time for the loop.
This value is useful as a norm which other potential bottlenecks can be compared against.

The throughput for an execution port is 1 µop per clock cycle on most Intel processors. The
load on a particular execution port is calculated as the number of µops that goes to this port
divided by the throughput of the port. If this value exceeds the retirement time as calculated
above, then this particular execution port is likely to be a bottleneck. AMD processors do not
have execution ports, but they have three or four pipelines with similar throughputs.

There may be more than one execution unit on each execution port on Intel processors.
Most execution units have the same throughput as the execution port. If this is the case
then the execution unit cannot be a narrower bottleneck than the execution port. But an
execution unit can be a bottleneck in the following situations: (1) if the throughput of the
execution unit is lower than the throughput of the execution port, e.g. for multiplication and
division; (2) if the execution unit is accessible through more than one execution port; and (3)
on AMD processors that have no execution ports.

The load on a particular execution unit is calculated as the total number of µops going to
that execution unit multiplied by the reciprocal throughput for that unit. If this value exceeds
the retirement time as calculated above, then this particular execution unit is likely to be a
bottleneck.

12.7 An example of analysis for bottlenecks in vector loops

The way to do these calculations is illustrated in the following example, which is the so-
called DAXPY algorithm used in linear algebra:

 // Example 12.6a. C++ code for DAXPY algorithm

 int i; const int n = 100;

 double X[n]; double Y[n]; double DA;

 for (i = 0; i < n; i++) Y[i] = Y[i] - DA * X[i];

The following implementation is for a processor with the SSE2 instruction set in 32-bit
mode, assuming that X and Y are aligned by 16:

; Example 12.6b. DAXPY algorithm, 32-bit mode

n equ 100 ; Define constant n (even and positive)

 mov ecx, n * 8 ; Load n * sizeof(double)

 xor eax, eax ; i = 0

 lea rsi, [X] ; X must be aligned by 16

 lea rdi, [Y] ; Y must be aligned by 16

 movsd xmm2, [DA] ; Load DA

 shufpd xmm2, xmm2, 0 ; Get DA into both qwords of xmm2

; This loop does 2 DAXPY calculations per iteration, using vectors:

L1: movapd xmm1, [rsi+rax] ; X[i], X[i+1]

 mulpd xmm1, xmm2 ; X[i] * DA, X[i+1] * DA

 93

 movapd xmm0, [rdi+rax] ; Y[i], Y[i+1]

 subpd xmm0, xmm1 ; Y[i]-X[i]*DA, Y[i+1]-X[i+1]*DA

 movapd [rdi+rax], xmm0 ; Store result

 add eax, 16 ; Add size of two elements to index

 cmp eax, ecx ; Compare with n*8

 jl L1 ; Loop back

Now let us analyze this code for bottlenecks on a Pentium M processor, assuming that there
are no cache misses. The CPU-specific details that I am referring to are explained in
manual 3: "The microarchitecture of Intel, AMD and VIA CPUs".

We are only interested in the loop, i.e. the code after L1. We need to list the µop breakdown

for all instructions in the loop, using the table in manual 4: "Instruction tables". The list looks
as follows:

Instruction µops
fused

execution ports execution
units

 port
0/1

port
0/1/5/6

port
6

port
2/3/7

port
4

FADD FMUL

movapd xmm1,[rsi+rax] 1 1
mulpd xmm1, xmm2 1 1 1
movapd xmm0,[rdi+rax] 1 1
subpd xmm0, xmm1 1 1 1
movapd [rdi+rax],xmm0 1 1 1
add eax, 16 1 1
cmp eax, ecx 1 1
jl L1 1 1

Total 8 2 2 1 3 1 1 1

The total number of fused µops going to all the ports is 8. The overall throughput is four
µops per clock cycle. This gives a minimum execution time of 2 clock cycles per iteration.

The arithmetic ports 0, 1, 5, and 6 receive 5 µops per iteration to distribute between 4 ports.
This gives a limit of 1.25 clock cycle per iteration.

The address calculation and input ports 2,3, and 7 receive 3 µops per iteration, which gives
a limit of 1 clock per iteration. The write port, 4, gets one µop.

The floating point unit FADD/FMUL receives 2 µops. A throughput of 2 µops per clock gives
a limit of 2 clock per iteration.

The time needed for instruction fetching can be calculated from the lengths of the
instructions. The total length of the eight instructions in the loop is 30 bytes. The processor
needs to fetch two 16-byte blocks if the loop entry is aligned by 16, or at most three 16-byte
blocks in the worst case. Instruction fetching is therefore not a bottleneck.

The conclusion is that the limiting bottleneck is the decoders or the µop cache which have a
limit of 4 fused µops per clock cycle.

There is a dependency chain in the loop. The latencies are: 2 for memory read, 4 for
multiplication, 4 for subtraction, and 3 for memory write, which totals 13 clock cycles. This is
three times as much as the retirement time but it is not a loop-carried dependence because
the results from each iteration are saved to memory and not reused in the next iteration.
The out-of-order execution mechanism and pipelining makes it possible that each
calculation can start before the preceding calculation is finished. The only loop-carried
dependency chain is add eax,16 which has a latency of only 1.

 94

The 2 clocks per iteration is a theoretical minimum. The measured execution time will often
be longer because of suboptimal out-or-order scheduling, suboptimal distribution of µops
between the execution ports, and cache contentions. The execution time will of course be
much longer if there are or cache misses.

It is possible to reduce the number of instructions in the loop by using a negative index from
the end of the arrays. The can improve the calculation speed because it reduces the
number of µops:

; Example 12.6c. Loop of DAXPY algorithm with negative indexes

section .data

align 16

SignBit DD 0, 80000000H ; qword with sign bit set

n equ 100 ; Define constant n (even and positive)

section .text

default rel

 mov eax, n * 8 ; Size = n * sizeof(double)

 lea rsi, [X] ; Address of array X (aligned)

 lea rdi, [Y] ; Address of array Y (aligned)

 add rsi, rax ; point to end of array X

 add rdi, rax ; point to end of array Y

 neg rax ; negative index

 movsd xmm2, [DA] ; Load DA

 xorpd xmm2, [SignBit] ; Change sign

 shufpd xmm2, xmm2, 0 ; Get -DA into both qwords of xmm2

L1: movapd xmm1, [rsi+rax] ; X[i], X[i+1]

 mulpd xmm1, xmm2 ; X[i] * (-DA), X[i+1] * (-DA)

 addpd xmm1, [rdi+rax] ; Y[i]-X[i]*DA, Y[i+1]-X[i+1]*DA

 movapd [rdi+rax],xmm1 ; Store result

 add rax, 16 ; Add size of two elements to index

 js L1 ; Loop back

This removes two instructions and two µops from the loop so that the theoretical minimum is
1.5 clock cycles per iteration.

12.8 Same example with FMA3

The Intel Haswell and later processors support the 3-operand form of fused multiply-and-
add instructions called FMA3. AMD Piledriver supports both FMA3 and FMA4.

; Example 12.6d. Loop of DAXPY with FMA3, using xmm registers

section .text

default rel

 mov eax, n * 8 ; Size = n * sizeof(double)

 lea rsi, [X] ; Address of array X (aligned)

 lea rdi, [Y] ; Address of array Y (aligned)

 add rsi, rax ; point to end of array X

 add rdi, rax ; point to end of array Y

 neg rax ; negative index

 vmovddup xmm2, [DA] ; Load DA x 2

L1: vmovapd xmm1, [rdi+rax] ; Y[i]

 vfnmadd231pd xmm1, xmm2, [rsi+rax] ; Y[i]-X[i]*DA

 vmovapd [rdi+rax], xmm1 ; Store

 add rax, 16 ; Add size of two elements to index

 jl L1 ; Loop back

This loop takes 1 - 2 clock cycles per iteration on Intel processors. It may help to align the
loop entry as explained in example 11.4.

 95

12.9 Same example with AVX512

You can double the throughput by using YMM registers using the AVX instruction set, or
you can quadruple the throughput by using ZMM registers with the AVX512 instruction set:

; Example 12.6e. Loop of DAXPY with AVX512, using zmm registers

section .text

default rel

n equ 128 ; n must be divisible by 8

 mov eax, n * 8 ; Size = n * sizeof(double)

 lea rsi, [X] ; Address of array X (aligned)

 lea rdi, [Y] ; Address of array Y (aligned)

 add rsi, rax ; point to end of array X

 add rdi, rax ; point to end of array Y

 neg rax ; negative index

 vbroadcastsd zmm2, [DA] ; Load DA x 8

L1: vmovupd zmm1, [rdi+rax] ; Y[i]

 vfnmadd231pd zmm1, zmm2, [rsi+rax] ; Y[i]-X[i]*DA

 vmovupd [rdi+rax], zmm1 ; Store

 add rax, 64 ; Add size of 8 elements to index

 jl L1 ; Loop back

Example 12.6e does not assume that the arrays are aligned by 64. Therefore, VMOVAPD has

been changed to VMOVUPD. The execution time for this loop has been measured to 1.5 clock

cycles on Skylake. The bottleneck is not execution units here, but cache effects and
perhaps the branch instruction. It is assumed that the array count n is divisible by 8 because
we are doing 8 operations per clock cycle. See next section for discussion of what to do
when n is not divisible by the vector size.

12.10 Loop unrolling

A loop that does n repetitions can be replaced by a loop that repeats n / r times and does r
calculations for each repetition, where r is the unroll factor. n should preferably be divisible
by r.

Loop unrolling can be used for the following purposes:

• Reducing loop overhead. The loop overhead per calculation is divided by the loop
unroll factor r. This is only useful if the loop overhead contributes significantly to the
calculation time. There is no reason to unroll a loop if some other bottleneck limits
the execution speed. For example, the loop in example 12.6e above cannot benefit
from further unrolling.

• Vectorization. A loop must be rolled out by r or a multiple of r in order to use vector
registers with r elements. The loop in example 12.6e is rolled out by 8 in order to use
vectors of eight double-precision numbers. If we had used single-precision numbers
then we would have rolled out the loop by 16 and used vectors of 16 elements.

• Improve branch prediction. The prediction of the loop exit branch can be improved
by unrolling the loop so much that the repeat count n / r does not exceed the
maximum repeat count that can be predicted on a specific CPU. However, the
branch misprediction penalty is likely to be hidden by the fact that the loop counter is
calculated way ahead of the loop body in an out-of-order processor.

• Improve caching. If the loop suffers from many data cache misses or cache
contentions then it may be advantageous to schedule memory reads and writes in
the way that is optimal for a specific processor. This is rarely needed on modern

 96

processors. See the optimization manual from the microprocessor vendor for details.

• Eliminate integer divisions. If the loop contains an expression where the loop counter
i is divided by an integer r or the modulo of i by r is calculated, then the integer
division can be avoided by unrolling the loop by r.

• Eliminate branch inside loop. If there is a branch or a switch statement inside the

loop with a repetitive pattern of period r then this can be eliminated by unrolling the
loop by r. For example, if an if-else branch goes either way every second time then
this branch can be eliminated by rolling out by two.

• Break loop-carried dependency chain. A loop-carried dependency chain can in some
cases be broken up by using multiple accumulators. The unroll factor r is equal to
the number of accumulators. See example 9.3b on page 64.

• Reduce dependence of induction variable. If the latency of calculating an induction
variable from the value in the previous iteration is so long that it becomes a
bottleneck then it may be possible to solve this problem by unrolling by r and
calculate each value of the induction variable from the value that is r places behind
in the sequence.

• Complete unrolling. A loop is completely unrolled when r = n, where n is a known
constant. This eliminates the loop overhead completely. Every expression that is a
function of the loop counter can be replaced by constants. Every branch that
depends only on the loop counter can be eliminated. See page 102 for examples.

There are also disadvantages to loop unrolling. Loop unrolling should only be used when
there is a reason to do so and a significant gain in speed can be obtained. Excessive loop
unrolling should be avoided. The disadvantages of loop unrolling are:

• Modern microprocessors can execute four or more independent instructions per
clock cycle. The loop overhead typically consists of a counter, a compare, and a
conditional jump. These instructions can execute simultaneously with the loop body
so that the loop overhead adds no extra clock cycles to the execution time. The
microprocessor may even execute multiple iterations of the loop simultaneously.
Loop unrolling is unlikely to increase the performance significantly in this case.

• The code becomes bigger and takes more space in the code cache. This can cause
code cache misses that cost more than what is gained by the unrolling. Note that the
code cache misses are not detected when the loop is tested in isolation.

• Some processors have a loopback buffer to increase the speed of very small loops.
The loopback buffer is limited to 20 - 50 instructions or 64 bytes of code, depending
on the processor. Loop unrolling is likely to decrease performance if it exceeds the
size of the loopback buffer. Processor-specific details are provided in manual 3: "The
microarchitecture of Intel, AMD and VIA CPUs".

• Many modern processors have a µop cache of limited size (see chapter 11.3). This
µop cache is so valuable that its use should be economized. Unrolled loops take up
more space in the µop cache. Note that the µop cache misses are not detected
when the loop is tested in isolation.

• A loop that has been unrolled to improve data caching on a specific microprocessor
may not be optimal when running on another processor with a different cache
structure.

 97

• The need to do extra calculations outside the unrolled loop in case n is not divisible
by r makes the code more complicated and clumsy and increases the number of
branches, as explained below.

• The unrolled loop may need more registers, e.g. for multiple accumulators.

There is a particular problem with loop unrolling when the repeat count n is not divisible by
the unroll factor r. There will be a remainder of n modulo r extra calculations that are not
done inside the loop. These extra calculations have to be done either before or after the
main loop.

It can be quite tricky to get the extra calculations right when the repeat count is not divisible
by the unroll factor. This gets particularly tricky if we are using a negative index as in
example 12.6c, d, and e. The following example shows the DAXPY algorithm again, this
time unrolled by 4, using AVX2. In this example n is a variable which may or may not be
divisible by 4.

; Example 12.7. Unrolled Loop of DAXPY, single precision.

section .text

default rel

 mov eax, [n] ; Array size

 shl eax, 3 ; Array size in bytes

 sub rax, 32 ; Skip any remainder

 lea rsi, [X] ; Address of array X

 lea rdi, [Y] ; Address of array Y

 add rsi, rax ; point to end of array X - 4*8

 add rdi, rax ; point to end of array Y - 4*8

 neg rax ; negative index

 vbroadcastsd ymm2, [DA] ; Load DA x 4

 jg L2 ; Skip main loop if n < 4

L1: ; main loop doing all elements except remainder

 vmovupd ymm1, [rdi+rax] ; Y[i]

 vfnmadd231pd ymm1, ymm2, [rsi+rax] ; Y[i]-X[i]*DA

 vmovupd [rdi+rax], ymm1 ; Store

 add rax, 32 ; Four elements per iteration

 jl L1 ; Loop back

L2: ; Check for any remaining elements

 sub rax, 32 ; = -remainder

 jns L4 ; Skip if remainder = 0

L3: ; Extra loop for remaining (n % 4) iterations

 vmovsd xmm1, [rdi+rax+32] ; Y[i]

 vfnmadd231sd xmm1,xmm2,[rsi+rax+32]; Y[i]-X[i]*DA

 vmovsd [rdi+rax+32], xmm1 ; Store

 add rax, 8 ; One element per iteration

 jl L3 ; Loop as long as negative

L4:

An alternative solution for an unrolled loop that does calculations on arrays is to extend the
arrays with up to r-1 unused spaces and rounding up the repeat count n to the nearest
multiple of the unroll factor r. This eliminates the need for calculating the remainder (n mod
r) and for the extra loop for the remaining calculations. The unused array elements must be
initialized to zero or some other valid floating point value in order to avoid subnormal
numbers, NAN, overflow, underflow, or any other condition that can slow down the floating
point calculations. If the arrays are of integer type then the only condition you have to avoid
is division by zero.

 98

To summarize: Loop unrolling has advantages and disadvantages. Do not unroll a loop
unless the advantages are clearly outweighing the disadvantages. It is a common pitfall to
measure the performance of an unrolled loop in isolation without considering the contention
for code cache or µop cache with other parts of the program. Some compilers are unrolling
loops excessively without considering the downsides. This may be a remnant from a time
when loop overhead costs were higher.

12.11 Vector loops using mask registers (AVX512)

The AVX512 instruction set provides masked operations. This feature is useful for masking
off the excess vector elements when the loop count is not divisible by the vector size:

; Example 12.8. Vectorized DAXPY loop using mask registers

section .data

align 64

countdown dd 7,6,5,4,3,2,1,0

eight dd 8

section .text

default rel

 lea rsi, [X] ; point to beginning of X

 lea rdi, [Y] ; point to beginning of Y

 mov edx, [n] ; number of elements, n

 vmovd xmm0, edx

 vpbroadcastd ymm0, xmm0 ; broadcast n

 vpaddd ymm0, ymm0, [countdown] ; counts = n + countdown

 vpbroadcastd ymm1, [eight] ; broadcast 8

 vbroadcastsd zmm2, [DA] ; broadcast DA

 xor eax, eax ; loop counter i = 0

L1: ; Loop rolled out by 8, unused elements masked out

 vpcmpud k1, ymm0, ymm1, 5 ; mask k1 = (counts >= 8)

 vpsubd ymm0, ymm0, ymm1 ; counts -= 8

 vmovupd zmm3 {k1}{z}, [rdi+rax*8] ; load Y[i]

 vfnmadd231pd zmm3 {k1}, zmm2, [rsi+rax*8] ; Y[i]-DA*X[I]

 vmovupd [rdi+rax*8] {k1}, zmm3 ; masked Y[i]

 add rax, 8 ; 8 elements per iteration

 cmp rax, rdx ; while i < n

 jb L1

Here, the mask in the k1 register has a 1-bit for all valid elements, and 0 for excess

elements beyond n. The number of remaining elements are counted down in YMM0.

The load and store instructions are masked by k1 to avoid loading and storing anything

beyond the n elements of Y. The masked load instruction has the zeroing option {z} to

avoid a false dependence on the previous value of the vector register ZMM3. It is good to

mask the calculation instructions as well, using the same mask. Masking the calculations
saves power and avoids exceptions and penalties for possible subnormal values, etc. There
is no cost to adding a mask to a 512-bit vector instruction.

The countdown instructions that are used for generating the mask must have the same
number of elements per vector as the calculations, but not necessarily the same number of
bits per element. We are counting down n in YMM0 with eight 32-bit unsigned integers, while

the DAXPY calculations are using eight 64-bit double precision floats in ZMM3.

The loop in example 12.9 is dominated by vector instructions. It is likely that vector
execution units will be a bottleneck here. It may be better to use integer instructions instead

 99

of vector instructions for making the mask if the execution units for vector addition is a
bottleneck. This is shown in the next example:

; Example 12.10. Vectorized DAXPY, mask calculated with integer instr.

; Note: This version works only for n < 256!

section .text

default rel

 lea rsi, [X] ; point to beginning of X

 lea rdi, [Y] ; point to beginning of Y

 vbroadcastsd zmm2, [DA] ; broadcast DA

 mov edx, [n] ; number of elements, n

 mov ecx, -1 ; fill with all 1's

 xor eax, eax ; loop counter i = 0

L1: ; Loop rolled out by 8, unused elements masked out

 bzhi ecx, ecx, edx ; zero bit positions > edx

 kmovw k1, ecx ; copy bits to mask register

 vmovupd zmm3 {k1}{z}, [rdi+rax*8] ; load Y[i]

 vfnmadd231pd zmm3 {k1}, zmm2, [rsi+rax*8] ; Y[i]-DA*X[I]

 vmovupd [rdi+rax*8] {k1}, zmm3 ; store Y[i]

 add rax, 8 ; 8 elements per iteration

 sub edx, 8 ; count down n

 ja L1 ; repeat if n positive

Example 12.10 counts down the number of remaining elements in edx and uses bzhi to

clear the remaining bits in ecx in the last iteration if edx < 16. The bzhi instruction belongs

to the BMI2 instruction set, which is supported on all known processors with AVX512. Note
that this works only for n < 256 because bzhi reads only the lower 8 bits of edx. We are

using the instruction kmovw rather than kmovb because the latter instruction requires

instruction set AVX512DQ.

If the iteration count is high and the instructions for calculating the mask are slowing down
the loop execution then it is better to have a main loop without masking and only do the
operations that require masking after the main loop:

; Example 12.11. Vectorized DAXPY, masking only after main loop

section .text

default rel

 lea rsi, [X] ; point to beginning of X

 lea rdi, [Y] ; point to beginning of Y

 vbroadcastsd zmm2, [DA] ; broadcast DA

 mov edx, [n] ; number of elements

 and edx, -8 ; round down n to a multiple of 8

 lea rsi, [rsi+rdx*8] ; point to the end of X

 lea rdi, [rdi+rdx*8] ; point to the end of Y

 neg rdx ; use negative index from the end

L1: ; Main loop rolled out by 8

 vmovupd zmm3, [rdi+rdx*8] ; load Y[i]

 vfnmadd231pd zmm3, zmm2, [rsi+rdx*8] ; Y[i]-DA*X[I]

 vmovupd [rdi+rdx*8], zmm3 ; store Y[i]

 add rdx, 8 ; next 8 elements

 jnz L1 ; count up to zero

 mov edx, [n] ; calculate remaining elements

 and edx, 7 ; n modulo 8

 ; Omit the next line if branch L2 is poorly predictable

 jz L2 ; optionally skip if zero

 mov eax, -1 ; all 1's

 bzhi eax, eax, edx ; zero bit positions > edx

 kmovw k1, eax ; copy bits to mask register

 ; rsi and rdi are pointing to where the main loop ended.

 ; Now do the last 0-7 elements, using mask k1

 100

 vmovupd zmm3 {k1}{z}, [rdi] ; load Y[i]

 vfnmadd231pd zmm3 {k1}, zmm2, [rsi] ; Y[i]-DA*X[I]

 vmovupd [rdi] {k1}, zmm3 ; store Y[i]

L2:

Example 12.11 contains the loop body twice. The first body is repeated n/8 times in the L1
loop. The second body calculates the remaining n modulo 8 elements when n is not divisible
by 8. It is not necessary to skip the last body with jz L2 if this branch is poorly predictable.

Example 12.11 has only 5 instructions in the loop body. This will be the fastest solution if the
loop count is high. Example 12.8 and 12.10 are useful if the loop body is so large that we do
not want to include it twice, or if the loop count is small, or if the bottleneck is memory
access or a loop-carried dependency chain. Example 12.10 can only be used if n < 256.

12.12 Optimize caching

Memory access is likely to take more time than anything else in a loop that accesses
uncached memory. Data should be held contiguous if possible and accessed sequentially,
as explained in chapter 11 page 81.

The number of arrays accessed in a loop should not exceed the number of read/write
buffers in the microprocessor. One way of reducing the number of data streams is to
combine multiple arrays into an array of structures so that the multiple data streams are
interleaved into a single stream.

Modern microprocessors have advanced data prefetching mechanisms. These mechanisms
can detect regularities in the data access pattern such as accessing data with a particular
stride. It is recommended to take advantage of such prefetching mechanisms by keeping
the number of different data streams at a minimum and keeping the access stride constant if
possible. Automatic data prefetching often works better than explicit data prefetching when
the data access pattern is sufficiently regular.

Explicit prefetching of data with the prefetch instructions may be necessary in cases where

the data access pattern is too irregular to be predicted by the automatic prefetch mecha-
nisms. A good deal of experimentation is often needed to find the optimal prefetching
strategy for a program that accesses data in an irregular manner.

It is possible to put the data prefetching into a separate thread if the microprocessor is able
to run two threads in each CPU core. The Intel C++ compiler has a feature for doing this.

Data access with a stride that is a high power of 2 is likely to cause cache line contentions.
This can be avoided by changing the stride or by loop blocking. See the chapter on
optimizing memory access in manual 1: "Optimizing software in C++" for details.

The non-temporal write instructions are useful for writing to uncached memory that is
unlikely to be accessed again soon. You may use vector instructions in order to minimize
the number of non-temporal write instructions.

12.13 Parallelization

The most important way of improving the performance of CPU-intensive code is to do things
in parallel. The main methods of doing things in parallel are:

• Improve the possibilities of the CPU to do out-of-order execution. This is done by
breaking long dependency chains (see page 64) and distributing µops evenly
between the different execution units or execution ports (see page 92).

 101

• Use vector instructions. See chapter 13 page 104.

• Use multiple threads. See chapter 14 page 130.

Loop-carried dependency chains can be broken by using multiple accumulators, as
explained on page 64. The maximum useful number of accumulators is the latency of the
most critical instruction in the dependency chain divided by the reciprocal throughput for that
instruction. For example, if the latency of floating point addition is 4 clock cycles and the
reciprocal throughput is 1, then the maximum useful number of accumulators is 4. A lower
number of accumulators than the maximum may be sufficient to make sure the loop-carried
dependency chain is not a limiting factor.

// Example 12.12a, Loop-carried dependency chain.

// C code without optimization

// (Same as example 9.3a page 64)

double list[100], sum = 0.0;

for (int i = 0; i < 100; i++) sum += list[i];

Example 12.12b shows a loop that adds a hundred numbers, using three AVX2 vector
registers as accumulators.

; Example 12.12b, Three vector accumulators

section .text

default rel

 ; Add 100 numbers using three accumulators with 4 numbers each

 lea rsi, [list] ; Pointer to list

 vmovapd ymm0, [rsi] ; load first 4 elements

 vmovapd ymm1, [rsi+32] ; load next 4 elements

 vmovapd ymm2, [rsi+64] ; load next 4 elements

 add rsi, 96 ; increment pointer

 mov ecx, 7 ; repeat loop 7 times

L1:

 vaddpd ymm0, ymm0, [rsi] ; add 4 elements

 vaddpd ymm1, ymm1, [rsi+32] ; add 4 elements

 vaddpd ymm2, ymm2, [rsi+64] ; add 4 elements

 add rsi, 96

 dec ecx

 jnz L1 ; loop

 vaddpd ymm0, ymm0, [rsi] ; add last 4 elements

 vaddpd ymm1, ymm1, ymm2 ; join two accumulators

 vaddpd ymm0, ymm0, ymm1 ; join last two accumulators

 ; calculate sum of the four elements in ymm0:

 vextractf128 xmm1, ymm0, 1 ; get upper half of ymm0 into xmm1

 vaddpd xmm0, xmm1, xmm1 ; join four values into two

 ; avoid the slow vhaddpd instruction

 vunpckhpd xmm1, xmm0, xmm0 ; get upper value

 vaddsd xmm0, xmm1 ; join last two values

 ; The sum is now in xmm0

In example 12.12b, I have loaded the three vector registers with the first 3*4 values from
list. The loop is doing 12 additions per iteration. We need to do four more additions after

the loop because 100 is not divisible by 12. The three accumulators containing four partial
sums each are added together to make one vector of four values after the loop. Finally,
these four values are added together to get the final sum.

The loop in example 12.12b has four loop-carried dependency chains running in parallel:
ymm0, ymm1, ymm2, and ecx. The speed is limited by the latency of the vaddpd instruction,

which is longer than the latency of the dec ecx instruction. It may be possible to improve

the speed further by using more accumulators, but other effects are likely to slow down

 102

execution as we reach the limiting throughput of the floating point adder. The optimal
number of accumulators is often less than the theoretical maximum. With only 7 iterations of
the loop in this example, it is probably not worth the extra code to add more accumulators.
There is no need to use negative indexes in this loop because the loop overhead is not a
limiting bottleneck.

The situation becomes more tricky if you want to use long double precision in order to
reduce the accumulation of rounding errors. Long double precision is available only with the
old x87 style floating point registers. These registers are organized as a rolling stack. We
have to use fxch instructions to get the desired register to the top of the stack.

; Example 12.12c, Four accumulators with long double precision

section .text

default rel

 ; Add 100 numbers using four long double precision accumulators

 lea rsi, [list] ; Pointer to list

 fld qword [rsi] ; accum1 = list[0]

 fld qword [rsi+8] ; accum2 = list[1]

 fld qword [rsi+16] ; accum3 = list[2]

 fld qword [rsi+24] ; accum4 = list[3]

 fxch st3 ; Get accum1 to top

 mov eax, 32 ; Index to list[4]

 mov ecx, 32 ; Repeat count

L1:

 fadd qword [rsi+rax] ; Add list[i]

 fxch st1 ; Swap accumulators

 fadd qword [rsi+rax+8] ; Add list[i+1]

 fxch st2 ; Swap accumulators

 fadd qword [rsi+rax+16] ; Add list[i+2]

 fxch st3 ; Swap accumulators

 add eax, 24 ; i += 3

 dec ecx

 jnz L1 ; Loop

 faddp st1, st0 ; Add two accumulators together

 fxch st1 ; Swap accumulators

 faddp st2, st0 ; Add the two other accumulators

 faddp st1, st0 ; Add these sums

 ; The final sum is now in st0

In example 12.12c, we have loaded the four accumulators with the first four values from
list. The funny thing about using x87 registers as accumulators is that the number of

accumulators is equal to the rollout factor plus one. This is a consequence of the way the
fxch instructions are used for swapping the accumulators. You have to play computer and

follow the position of each accumulator on the floating point register stack to verify that the
four accumulators are actually rotated one place after each iteration of the loop so that each
accumulator is used for every fourth addition despite the fact that the loop is only rolled out
by three.

12.14 Macro loops

If the repetition count for a loop is small and constant, then it is possible to unroll the loop
completely. The advantage of this is that calculations that depend only on the loop counter
can be done at assembly time rather than at execution time. The disadvantage is, of course,
that it takes up more space in the code cache if the repeat count is high.

The NASM syntax includes a macro language, which can be quite useful. Other assemblers
have similar capabilities, but the syntax is different.

 103

If, for example, we need a list of square numbers, then the C++ code may look like this:

// Example 12.13a. Loop to make list of squares

int squares[10];

for (int i = 0; i < 10; i++) squares[i] = i*i;

The same list can be generated by a macro loop in NASM language:

; Example 12.13b. Macro loop to produce data

section .data

squares: ; label at start of array

%assign i 0 ; temporary loop counter

%rep 10 ; repeat 10 times

 DD i*i ; define one array element

%assign i i+1 ; increment loop counter

%endrep ; end of rep loop

Here, i is a preprocessing variable. The i loop is run at assembly time, not at execution

time. The variable i and the statement %assign i i+1 never make it into the final code,

and hence take no time to execute. In fact, example 12.13b generates no executable code,
only data. The macro preprocessor will translate the above code to:

; Example 12.13c. Resuls of macro loop expansion

squares: ; label at start of array

 DD 0

 DD 1

 DD 4

 DD 9

 DD 16

 DD 25

 DD 36

 DD 49

 DD 64

 DD 81

Macro loops are also useful for generating code. The next example calculates xn, where x is
a floating point number and n is a positive integer. This is done most efficiently by
repeatedly squaring x and multiplying together the factors that correspond to the binary
digits in n. The algorithm can be expressed by the C++ code:

// Example 12.14a. Calculate pow(x,n) where n is a positive integer

double x, xp, power;

unsigned int n, i;

xp = x; power = 1.0;

for (i = n; i != 0; i >>= 1) {

 if (i & 1) power *= xp;

 xp *= xp;

}

If n is known at assembly time, then the power function can be implemented using the
following macro loop:

; Example 12.14b.

; INTPOWER macro calculates the integer power N of a double

; precision floating point value X, using SSE2 instruction set.

; INTPOWER has three parameters:

; X: xmm register used as input. This register is not preserved

; Y: xmm register used for the result. Must be different from X

; N: A positive integer constant

; The result will be Y = pow(X,N)

%macro INTPOWER 3

 104

; local temporary variables:

; IPI: Used for shifting N

; YUSED: Remember if Y contains data

 %assign IPI %3 ; IPI = N

 %assign YUSED 0 ; remember if Y contains valid data

 %rep 32 ; maximum repeat count is 32

 %if IPI & 1 ; test bit 0 of IPI

 %if YUSED ; if Y already contains data

 mulsd %2, %1 ; multiply Y with a power of X

 %else ; if this is first time Y is used:

 movsd %2, %1 ; copy data to Y

 %assign YUSED 1 ; remember that Y now contains data

 %endif

 %endif

 %assign IPI (IPI >> 1) ; shift right IPI one place

 %if IPI == 0 ; stop when IPI = 0

 %exitrep ; exit REP 32 loop prematurely

 %else

 mulsd %1, %1 ; square X

 %endif

 %endrep ; end of REP 32 loop

%endmacro ; end of INTPOWER macro definition

; if AVX instruction set:

; change mulsd %2, %1 to vmulsd %2, %2, %1

; change mulsd %1, %1 to vmulsd %1, %1, %1

; change movsd %2, %1 to vmovsd %2, %1

This macro generates the minimum number of instructions needed to do the job. There is no
loop overhead, prolog or epilog in the final code. And, most importantly, no branches. All
branches have been resolved by the macro preprocessor. To calculate xmm0 to the power of

12, you write:

; Example 12.14c. Macro invocation

INTPOWER xmm0, xmm1, 12

This will be expanded to:

; Example 12.14d. Result of macro expansion

mulsd xmm0, xmm0 ; x^2

mulsd xmm0, xmm0 ; x^4

movsd xmm1, xmm0 ; save x^4

mulsd xmm0, xmm0 ; x^8

mulsd xmm1, xmm0 ; x^4 * x^8 = x^12

This even has fewer instructions than an optimized assembly loop without unrolling. The
macro can also work on vectors when mulsd is replaced by mulpd and movsd is replaced by

movapd.

13 Vector programming
There are physical and technological limits to the maximum clock frequency of microproces-
sors. Therefore, the trend goes towards increasing processor throughput by handling
multiple data in parallel.

When optimizing code, it is important to consider if there are data that can be handled in
parallel. The principle of Single-Instruction-Multiple-Data (SIMD) programming is that a
vector or set of data are packed together in one large register and handled together in one
operation. There are more than a thousand different SIMD instructions available. These
instructions are listed in "Intel 64 and IA-32 Architectures Software Developer’s Manual" and
in "AMD64 Architecture Programmer’s Manual".

 105

Multiple data can be packed into 64-bit MMX registers, 128-bit XMM registers, 256-bit YMM
registers, or 512-bit ZMM registers in the following ways:

data type data per pack register size instruction set

8 bit integer 8 64 bit (MMX) MMX

16 bit integer 4 64 bit (MMX) MMX

32 bit integer 2 64 bit (MMX) MMX

64 bit integer 1 64 bit (MMX) SSE2

32 bit float 2 64 bit (MMX) 3DNow (obsolete)

8 bit integer 16 128 bit (XMM) SSE2

16 bit integer 8 128 bit (XMM) SSE2

32 bit integer 4 128 bit (XMM) SSE2

64 bit integer 2 128 bit (XMM) SSE2

32 bit float 4 128 bit (XMM) SSE

64 bit float 2 128 bit (XMM) SSE2

8 bit integer 32 256 bit (YMM) AVX2

16 bit integer 16 256 bit (YMM) AVX2

32 bit integer 8 256 bit (YMM) AVX2

64 bit integer 4 256 bit (YMM) AVX2

32 bit float 8 256 bit (YMM) AVX

64 bit float 4 256 bit (YMM) AVX

8 bit integer 64 512 bit (ZMM) AVX-512BW

16 bit integer 32 512 bit (ZMM) AVX-512BW

32 bit integer 16 512 bit (ZMM) AVX-512

64 bit integer 8 512 bit (ZMM) AVX-512

32 bit float 16 512 bit (ZMM) AVX-512

64 bit float 8 512 bit (ZMM) AVX-512

Table 13.1. Vector types

Whether the different instruction sets are supported on a particular microprocessor can be
determined with the CPUID instruction, as explained on page 131. The 64-bit MMX registers

cannot be used together with the x87 style floating point registers. The vector registers can
only be used if supported by the operating system. See page 132 for how to check if the use
of vector registers is enabled by the operating system.

It is advantageous to choose the smallest data size that fits the purpose, in order to pack as
many data as possible into one vector register. Mathematical computations may require
double precision (64-bit) floats in order to avoid loss of precision in the intermediate
calculations, even if single precision is sufficient for the final result.

Before you choose to use vector instructions, you have to consider whether the resulting
code will be faster than the simple instructions without vectors. Vector code is sometimes
unsing more instructions on trivial things such as converting and moving data into the right
positions in the registers, and emulating branches with conditional moves, than on the
actual calculations. Example 13.9 below is an example of this. Vector instructions are
relatively slow on older processors, but many newer processors can do a vector calculation
just as fast as a scalar (single) calculation in many cases.

For floating point calculations, it is preferred to use vector registers rather than the old x87
registers, even if there are no opportunities for handling data in parallel. The vector registers
are handled in a more straightforward way than the old x87 register stack, and some CPUs
have poor performance for x87 instructions.

Memory operands for XMM instructions without VEX prefix have to be aligned by 16.
Memory operands for YMM instructions are preferably aligned by 32 and ZMM by 64, but
this is not necessary. See page 85 for how to align data in memory.

 106

Most common arithmetic and logical operations can be performed in vector registers. The
following example illustrates the addition of two arrays:

; Example 13.1a. Adding two arrays using vectors

; float a[128], b[128], c[128];

; for (int i = 0; i < 128; i++) a[i] = b[i] + c[i];

; a, b and c are preferably aligned by 64

 xor ecx, ecx ; Loop counter i = 0

L: vmovups zmm0, [b+rcx] ; Load 16 elements from b

 vaddps zmm0,zmm0,[c+rcx]; Add 16 elements from c

 vmovups [a+rcx], zmm0 ; Store 16 results in a

 add ecx, 64 ; 16 elements * 4 bytes = 64

 cmp ecx, 512 ; 128 elements * 4 bytes = 512

 jb L ; Loop

There are no instructions for integer division. Integer division by a constant divisor can be
implemented as multiplication and shift, using the method described on page 136 or the
functions in the vector class library at github.com/vectorclass or the assembly library at
www.agner.org/optimize/asmlib.zip.

13.1 Using AVX instruction set and YMM or ZMM registers

The 128-bit XMM registers are extended to 256-bit YMM registers and 512-bit ZMM
registers when the various AVX instruction set extensions are available. Further extensions
to 1024 bits and perhaps 2048 bits are possible in the future, but no such plans have been
published yet (2020).

There are 16 YMM registers or 32 ZMM registers in 64-bit mode. There are only 8
XMM/YMM/ZMM registers in 32-bit mode.

Most AVX instructions allow three operands: one destination and two source operands. This
has the advantage that no input register is overwritten by the result.

All the XMM instructions have two versions in the AVX instruction set. A legacy version
which leaves the upper half (bit 128-511) of the target ZMM register unchanged, and a VEX-
prefix version which sets the upper bits to zero in order to make the result independent of
the previous value of the upper bits of the target register.

The VEX-prefix version has a V prefix to the name and in most cases three operands:

; Example 13.2. Legacy and VEX versions of the same instruction

addps xmm1,xmm2 ; xmm1 = xmm1 + xmm2

vaddps xmm1,xmm2,xmm3 ; xmm1 = xmm2 + xmm3

13.2 Mixing VEX and SSE code

There is a problem if a program contains a mixture of instructions with different vector sizes,
such as SSE instructions with XMM registers and VEX instructions with YMM or ZMM
registers.

Mixing YMM or ZMM instructions with legacy 128-bit instructions without VEX prefix will
cause some Intel processors to switch the register file between different states which will
cost many clock cycles.

The following applies to Intel Sandy Bridge, Ivy Bridge, Haswell, and Broadwell processors.
These processors have YMM registers but not ZMM registers.

https://github.com/vectorclass
https://www.agner.org/optimize/asmlib.zip

 107

For the sake of compatibility with legacy SSE code, the register set has three different
states on Sandy Bridge, Ivy Bridge, Haswell, and Broadwell processors:

A. (Clean state). The upper bits of all YMM registers are unused and known to be zero.

B. (Modified state). Bits 128-255 of at least one YMM register are used and contain
data.

C. (Saved state). All YMM registers are split in two. The lower half is used by legacy
SSE instructions which leave the upper part unchanged. All the upper-part halves
are stored in a scratchpad. The two parts of each register will be joined together
again if needed by a transition to state B.

Two instructions are available for the sake of fast transition between these states. VZEROALL

which sets all YMM registers to zero, and VZEROUPPER which sets the upper part of YMM0-

YMM15 or ZMM0-ZMM15 registers to zero. Both instructions leave the processor in state A.
The state transitions can be illustrated by the following state transition table:

Current state → A B C

Instruction 

VZEROALL / UPPER A A A

XMM A C C

VEX XMM A B B

VEX YMM B B B

Table 13.2. YMM state transitions

State A is the neutral initial state. State B is needed when the full YMM registers are used.
State C is needed for making legacy XMM code fast and free of false dependences when
called from state B. A transition from state B to C is costly because all YMM registers must
be split in two halves which are stored separately. A transition from state C to B is equally
costly because all the registers have to be merged together again. A transition from state C
to A is also costly because the scratchpad containing the upper part of the registers does
not support out-of-order access and must be protected from speculative execution in

possibly mispredicted branches. The transitions B → C, C → B and C → A are very time
consuming on these Intel processors because they have to wait for all registers to retire.

Transitions A → B and B → A are fast, taking at most one clock cycle. C should be regarded

as an undesired state, and the transition A → C is not possible. The undesired transitions
take approximately 70 clock cycles on Intel Sandy Bridge, Ivy Bridge, Haswell, and
Broadwell processors according to my measurements.

The following examples illustrate the state transitions:

; Example 13.3a. Transition between YMM states

vaddps ymm0, ymm1, ymm2 ; State B

addss xmm3, xmm4 ; State C

vmulps ymm0, ymm0, ymm5 ; State B

Example 13.3a has two expensive state transitions, from B to C, and back to state B. The
state transition can be avoided by replacing the legacy ADDSS instruction by the VEX-coded

version VADDSS:

; Example 13.3b. Transition between YMM states avoided

vaddps ymm0, ymm1, ymm2 ; State B

vaddss xmm3, xmm3, xmm4 ; State B

vmulps ymm0, ymm0, ymm5 ; State B

 108

This method cannot be used when calling a library function that uses XMM instructions. The
solution here is to save any used YMM registers and go to state A:

; Example 13.3c. Transition to state A

vaddps ymm0, ymm1, ymm2 ; State B

vmovaps [mem], ymm0 ; Save ymm0

vzeroupper ; State A

call XMM_Function ; Legacy function

vmovaps ymm0, [mem] ; Restore ymm0

vmulps ymm0, ymm0, ymm5 ; State B

vzeroupper ; Go to state A before returning

ret

...

XMM_Function proc near

addss xmm3, xmm4 ; State A

ret

Intel Skylake and later processors behave differently. They have state A and B, but not state
C. This avoids the expensive transitions to and from state C, but gives another problem
instead.

The Skylake processor is unable to split a vector register in two. If a non-VEX instruction
writes to an XMM register while in state B, then the instruction will have to wait for the
previous value of this register because it may have to combine the lower part from the non-
VEX instruction with the upper part from a preceding VEX instruction. For example:

; Example 13.4. Mixing VEX and SSE instructions on Skylake

vaddps zmm0, zmm1, zmm2 ; State B

mulps xmm3, xmm4

movaps [mem], xmm3 ; Save xmm3

movps xmm3, xmm5 ; Must wait for mulps

The state does not distinguish between individual registers. The processor treats all
registers as having a dirty upper part when in state B. Therefore, the last instruction must
wait for the result of the preceding multiplication in order to join the two parts of register
zmm3.

The AMD Ryzen processor splits all 256-bit instructions into two 128-bit µops so that these
problems never occur.

Guidelines for mixing VEX and non-VEX code.

Mixtures of VEX and non-VEX code occur frequently when functions libraries are used. For
example, a program compiled for the AVX512 instruction set may call a library function
compiled for SSE2.

The following guidelines should be followed in order to get optimal performance in programs
that mix SSE and VEX code.

• A function that uses YMM or ZMM instructions should issue a VZEROALL or

VZEROUPPER before returning if there is a possibility that it might return to SSE code.

• A function that uses YMM or ZMM instructions should save any used YMM or ZMM
register and issue a VZEROALL or VZEROUPPER before calling any function that might

contain SSE code.

• A function that has a CPU dispatcher for choosing YMM or ZMM code if available
and XMM code otherwise, should issue a VZEROALL or VZEROUPPER before leaving

the YMM or ZMM part.

 109

This recommendation allows any function to use the largest vector registers available, but a
function that uses YMM or ZMM registers must leave the registers in state A before calling
any function with unknown VEX status and before returning to any function with unknown
VEX status.

Obviously, this does not apply to functions that use YMM or ZMM registers for parameter
transfer or return. A function that uses YMM or ZMM registers for parameter transfer can
assume state B on entry. A function that uses a YMM or ZMM register for the return value
can only be in state B on return. State C should always be avoided.

The VZEROUPPER instruction is faster than VZEROALL on most processors. Therefore, it is

recommended to use VZEROUPPER rather than VZEROALL unless you want a complete

initialization. VZEROALL cannot be used in 64-bit Windows because the ABI specifies that

registers XMM6 - XMM15 have callee-save status. In other words, the calling function can

assume that register XMM6 - XMM15, but not the upper parts of the YMM or ZMM registers,

are unchanged after return. No vector registers have callee-save status in 32-bit Windows
or in any Unix system (Linux, BSD, Mac). Therefore it is OK to use VZEROALL in e.g. Linux.

Obviously, VZEROALL cannot be used if any XMM register contains a function parameter or

return value. VZEROUPPER must be used in these cases.

Unfortunately, the VZEROUPPER and VZEROALL instructions are expensive on the Knights

Landing processor (the first processor to support AVX512). It is not recommended to use
these instructions on the Knights Landing. The question on when to use VZEROUPPER and

when not to use it is discussed at https://software.intel.com/en-us/forums/intel-isa-
extensions/topic/704023.

An alternative solution is to use only ZMM16-ZMM31. These registers are not accessible to
SSE code and they do not affect the state. This may be the optimal solution on processors
that support AVX512, but it cannot be used when YMM0 or ZMM0 etc. are needed for
function parameters or function return value. Note that VZEROUPPER and VZEROALL affect

only ZMM0-ZMM15, not ZMM16-ZMM31.

Mixing VEX and non-VEX instructions is a common error that is very easy to make and very
difficult to detect. The code will still work, but with reduced performance on most Intel
processors. It is strongly recommended that you double-check your code for any mixing of
VEX and non-VEX instructions.

Warm up time

Many processors are able to turn off the upper bits of the 256 bit or 512 bit execution units
in order to save power when these units are not used.

It takes typically 10-20 µs to power up this upper part after an idle period. The throughput of
256-bit vector instructions is much lower during this warm-up period because the processor
uses the lower 128-bit units twice to execute a 256-bit operation. It is possible to make the
256-bit units or 512-bit units warm up in advance by executing a dummy 256 or 512-bit
instruction at a suitable time before the larger unit is needed. The upper part of the 256 or
512-bit units will be turned off again after approximately1 ms of no large vector instructions.
This phenomenon is described in manual 3: "The microarchitecture of Intel, AMD and VIA
CPUs".

Operating system support

Code that uses YMM or ZMM registers or VEX coded instructions can only run in an
operating system that supports this register size because the operating system must save
the YMM or ZMM registers on task switches.

The following operating system versions support AVX and YMM registers: Windows 7,
Windows server 2008 SP2, Linux kernel version 2.6.30 and later.

https://software.intel.com/en-us/forums/intel-isa-extensions/topic/704023
https://software.intel.com/en-us/forums/intel-isa-extensions/topic/704023

 110

The following operating system versions support AVX512 and ZMM registers: Windows 10
and Linux kernel version 3.15.

YMM/ZMM and system code

A situation where transitions between state B and C must take place is when YMM code is
interrupted and the interrupt handler contains legacy XMM code that saves the XMM
registers but not the full YMM registers. In fact, state C was invented exactly for the sake of
preserving the upper part of the YMM registers in this situation.

It is very important to follow certain rules when writing device drivers and other system code
that might be called from interrupt handlers. If any vector register is modified by a VEX
instruction in system code then it is necessary to save the entire register state with XSAVE

first and restore it with XRESTOR before returning. It is not sufficient to save the individual

YMM registers because future processors, which may extend the YMM registers further to
512-bit ZMM registers or still larger, will zero-extend the YMM registers to ZMM when
executing YMM instructions and thereby destroy the highest part of the ZMM registers.
XSAVE / XRESTOR is the only way of saving these registers that is compatible with future

extensions beyond 256 or 512 bits. Future extensions will not use the complicated method
of having two versions of every vector instruction.

If a device driver does not use XSAVE / XRESTOR then there is a risk that it might

inadvertently use VEX code even if the programmer did not intend this. A compiler that is
not intended for system code may insert implicit calls to library functions such as memset

and memcpy. These functions typically have their own CPU dispatcher which may select the

largest register size available. It is therefore necessary to use a compiler and a function
library that are intended for making system code.

These rules are described in more detail in manual 5: "Calling conventions".

Using non-destructive three-operand instructions

The AVX instruction set which defines the YMM instructions also defines an alternative
encoding of all existing XMM instructions by replacing existing prefixes and escape codes
with the new VEX prefix. The VEX prefix has the further advantage that it defines an extra
register operand. Almost all XMM instructions that previously had two operands now have
three operands when the VEX prefix is used.

The two-operand version of an instruction typically uses the same register for the
destination and for one of the source operands:

; Example 13.5a. Two-operand instruction

movsd xmm0, xmm1 ; copy xmm1 to avoid overwriting the value

addsd xmm0, xmm2 ; xmm0 = xmm0 + xmm2

This has the disadvantage that the result overwrites the value of one of the source
operands. The move instruction in example 13.5a can be avoided when the three-operand
version of the addition is used:

; Example 13.5b. Three-operand instruction

vaddsd xmm0, xmm1, xmm2 ; xmm0 = xmm1 + xmm2

Here none of the source operands are destroyed because the result can be stored in a
different destination register. This can be useful for avoiding register-to-register moves. The
addsd and vaddsd instructions in example 13.5a and 13.5b have exactly the same length.

Therefore there is no penalty for using the three-operand version. The instructions with
names ending in ps (packed single precision) are one byte shorter in the two-operand

version than the three-operand VEX version if the destination register is not xmm8 - xmm15.

 111

The three-operand version is shorter than the two-operand version in a few cases. In most
cases the two- and three-operand versions have the same length.

It is possible to mix two-operand and three-operand instructions in the same code as long
as the register set is in state A. But if the register set happens to be in state C for whatever
reason then the mixing of XMM instructions with and without VEX will cause a costly state
change every time the instruction type changes. It is therefore better to use VEX versions
only or non-VEX only. If YMM or ZMM registers are used (state B) then you should use only
the VEX-prefix version for all XMM instructions until the VEX-section of code is ended with a
VZEROALL or VZEROUPPER.

The 64-bit MMX instructions and most general purpose register instructions do not have
three operand versions. There is no penalty for mixing MMX and VEX instructions. Only a
few general purpose register instructions also have three operands.

Unaligned memory access

All VEX coded vector instructions with a memory operand allow unaligned memory access,
except for the explicitly aligned instructions VMOVAPS, VMOVAPD, VMOVDQA, VMOVNTPS,

VMOVNTPD, VMVNTDQ. Therefore, it is possible to store YMM and ZMM operands on the stack

without keeping the stack aligned by 32.

Compiler support

The AVX instruction sets are supported by the Microsoft, Intel, Gnu, and Clang compilers.

The compilers will use the VEX prefix version for all XMM instructions, including intrinsic
functions, if compiling for an AVX instruction set. It is the responsibility of the programmer to
issue a VZEROUPPER instruction before any transition from a module compiled with AVX to a

module or library compiled without AVX.

Fused multiply-and-add instructions

A fused multiply-and-add (FMA) instruction can make a floating point multiplication followed
by a floating point addition or subtraction in the same time that it otherwise takes to make
only a multiplication. The FMA operation has the form:

d = a * b + c

There are two different variants of FMA instructions, called FMA3 and FMA4. FMA4
instructions can use four different registers for the operands a, b, c and d. FMA3 instructions
have only three operands, where the destination d must use the same register as one of the
input operands a, b or c. Intel originally designed the FMA4 instruction set, but currently
supports only FMA3. The latest AMD processors support both FMA3 and FMA4 (See
en.wikipedia.org/wiki/FMA_instruction_set#History).

Examples

Example 12.8 page 98 illustrates the use of the AVX512 instruction set for a DAXPY
calculation, using FMA3 instructions.

13.3 Using AVX512 instruction set and ZMM registers

The vector registers are extended to 512 bits with the AVX512 instruction set. The number
of vector registers is increased to 32 registers in 64-bit mode, while there are only 8 vector
registers in 32-bit mode.

There are 8 new mask registers named k0 - k7. The mask registers k1 - k7 can be used for
conditional operations on each vector element as explained on page 115. Conditional

http://en.wikipedia.org/wiki/FMA_instruction_set#History

 112

operations are also useful for array loops when the array size is not divisible by the size of
the vector registers. This is explained on page 98.

There are several additional extensions to AVX512. All processors with AVX512 have some
of these extensions, but no processor so far has them all (writing in 2020). The known and
planned extensions to AVX512 are the following:

• AVX512F. Foundation. All AVX512 processors have this. Includes operations on 32-
bit and 64-bit integers, float and double in 512-bit vectors, including masked
operations.

• AVX512VL. Includes the same operations on 128-bit and 256-bit vectors, including
masked operations and 32 vector registers.

• AVX512BW. Operations on 8-bit and 16-bit integers in 512-bit vectors.

• AVX512DQ. Multiplication and conversion instructions with 64-bit integers. Various
other instructions on float and double.

• AVX512ER. Fast reciprocal, reciprocal square root, and exponential function.
Precise on float; approximate on double.

• AVX512CD. Conflict detection. Find duplicate elements in a vector.

• AVX512PF. Prefetch instructions with gather/scatter logic.

• AVX512VBMI. Permutation and shift with 8-bit granularity.

• AVX512VBMI2. Compress and expand with 8-bit and 16-bit granularity.

• AVX512IFMA. Fused multiply-and-add on 52-bit integers.

• AVX512_4VNNIW. Iterated dot product on 16-bit integers.

• AVX512_4FMAPS. Iterated fused multiply-and-add, single precision.

13.4 Conditional moves in xmm and ymm registers

Consider this C++ code which finds the biggest values in four pairs of values:

// Example 13.6a. Loop to find maximums

float a[4], b[4], c[4];

for (int i = 0; i < 4; i++) {

 c[i] = a[i] > b[i] ? a[i] : b[i];

}

If we want to implement this code with XMM registers then we cannot use a conditional
jump for the branch inside the loop because the branch condition is not the same for all four
elements. Fortunately, there is a maximum instruction that does the same:

; Example 13.6b. Maximum in XMM

movaps xmm0, [a] ; Load a vector

maxps xmm0, [b] ; max(a,b)

movaps [c], xmm0 ; c = a > b ? a : b

Minimum and maximum vector instructions exist for single and double precision floats and
for 8-bit and 16-bit integers. There are vector instructions for finding the absolute value of
integers. The absolute value of floating point vector elements is calculated by AND'ing out
the sign bit, as shown in example 13.17 page 124. The integer saturated addition vector
instructions (e.g. PADDSW) can also be used for finding maximum or minimum or for limiting

values to a specific range.

These methods are not very general, however. The most general way of doing conditional
moves in vector registers is to use Boolean vector instructions. The following example is a
modification of the above example where we cannot use the MAXPS instruction:

// Example 13.7a. Branch in loop

float a[4], b[4], c[4], x[4], y[4];

for (int i = 0; i < 4; i++) {

 113

 c[i] = x[i] > y[i] ? a[i] : b[i];

}

The method for doing conditional moves depends on the instruction set. The first SSE
instruction set is implementing conditional moves by making a mask that consists of all 1's
when the condition is true and all 0's when the condition is false. a[i] is AND'ed with this

mask and b[i] is AND'ed with the inverted mask:

; Example 13.7b. Conditional move with SSE2 instruction set

movaps xmm1, [y] ; Load y vector

cmpltps xmm1, [x] ; Compare with x. xmm1 = mask for y < x

movaps xmm0, [a] ; Load a vector

andps xmm0, xmm1 ; a AND mask

andnps xmm1, [b] ; b AND NOT mask

orps xmm0, xmm1 ; (a AND mask) OR (b AND NOT mask)

movaps [c], xmm0 ; c = x > y ? a : b

The vectors that make the condition (x and y in example 13.7b) and the vectors that are

selected (a and b in example 13.7b) need not be the same type. For example, x and y could

be integers. But they should have the same number of bits per element. If a and b are

double's with two elements per vector, and x and y are 32-bit integers with four elements

per vector, then we have to duplicate each element in x and y in order to get the right size of

the mask (See example 13.9b below).

Note that the AND-NOT instruction (andnps, andnpd, pandn) inverts the destination

operand, not the source operand. This means that it destroys the mask. Therefore we must
have andps before andnps in example 13.7b. If SSE4.1 is supported then we can use the

BLENDVPS instruction instead:

; Example 13.7c. Conditional move with SSE4.1 instruction set

movaps xmm0, [y] ; Load y vector

cmpltps xmm0, [x] ; Compare with x. xmm0 = mask for y < x

movaps xmm1, [a] ; Load a vector

blendvps xmm1, [b], xmm0 ; Blend a and b

movaps [c], xmm0 ; c = x > y ? a : b

If the mask is needed more than once then it may be more efficient to AND the mask with
an XOR combination of a and b. This is illustrated in the next example which makes a

conditional swapping of a and b:

// Example 13.8a. Conditional swapping in loop

float a[4], b[4], x[4], y[4], temp;

for (int i = 0; i < 4; i++) {

 if (x[i] > y[i]) {

 temp = a[i]; // Swap a[i] and b[i] if x[i] > y[i]

 a[i] = b[i];

 b[i] = temp;

 }

}

And now the assembly code using XMM registers:

; Example 13.8b. Conditional swapping in XMM registers, SSE

movaps xmm2, [y] ; Load y vector

cmpltps xmm2, [x] ; Compare with x. xmm2 = mask for y < x

movaps xmm0, [a] ; Load a vector

movaps xmm1, [b] ; Load b vector

xorps xmm0, xmm1 ; a XOR b

andps xmm2, xmm0 ; (a XOR b) AND mask

xorps xmm1, xmm2 ; b XOR ((a XOR b) AND mask)

xorps xmm2, [a] ; a XOR ((a XOR b) AND mask)

 114

movaps [b], xmm1 ; (x[i] > y[i]) ? a[i] : b[i]

movaps [a], xmm2 ; (x[i] > y[i]) ? b[i] : a[i]

The xorps xmm0,xmm1 instruction generates a pattern of the bits that differ between a and

b. This bit pattern is AND'ed with the mask so that xmm2 contains the bits that need to be

changed if a and b should be swapped, and zeroes if they should not be swapped. The last

two xorps instructions flip the bits that have to be changed if a and b should be swapped

and leave the values unchanged if not.

The mask used for conditional moves can also be generated by shifting the desired bit into
the most significant position for use with blend instructions. If the AND / ANDN method is
used then copy the most significant bit into all bit positions using the arithmetic shift right
instruction psrad.

The shift method is illustrated in the next example where vector elements are raised to
different integer powers. We are using the method in example 12.14a page 103 for
calculating powers.

// Example 13.9a. Raise vector elements to different integer powers

double x[2], y[2]; unsigned int n[2];

for (int j = 0; j < 2; j++) {

 y[j] = pow(x[j],n[j]);

}

// This can be optimized to

double x[2], xp[2], y[2];

unsigned int n[2], i[2];

for (int j = 0; j < 2; j++) {

 xp[j] = x[j];

 y[j] = 1.0;

 for (i[j] = n[j]; i[j] != 0; i[j] >>= 1) {

 if (i[j] & 1) y[j] *= xp[j];

 xp[j] *= xp[j];

 }

}

If the elements of n are equal then the simplest solution is to use a branch. But if the powers

are different then we have to use conditional moves:

; Example 13.9b. Raise vector to powers using integer mask, SSE4.1

section .data

align 16

one DQ 1.0, 1.0 ; Make constant 1.0

X DQ 2.0, 3.0 ; x[0], x[1]

Y DQ 0, 0 ; y[0], y[1]

N DD 4, 5 ; n[0], n[1]

section .text

default rel

; xmm0 = selector for conditional move

; xmm1 = xp

; xmm2 = i (i0 and i1 each stored twice as DWORD integers)

; xmm3 = y

; xmm4 = (i & 1) ? xp : 1.0

 movq xmm2, [N] ; Load n0, n1

 punpckldq xmm2, xmm2 ; Get each value twice: n0, n0, n1, n1

 movapd xmm1, [X] ; Load x0, x1

 movapd xmm3, [one] ; y initialized to 1.0

 115

 mov eax, [N] ; n0

 or eax, [N+4] ; n0 OR n1 to get highest significant bit

 xor ecx, ecx ; 0 if n0 and n1 are both zero

 bsr ecx, eax ; Compute repeat count for max(n0,n1)

L1: movdqa xmm0, xmm2 ; Copy i

 pslld xmm0, 31 ; Get least significant bit of i into

 ; most significant bit

 movapd xmm4, [one] ; 1.0

 blendvpd xmm4, xmm1, xmm0 ; (i & 1) ? xp : 1.0

 psrld xmm2, 1 ; i >>= 1

 mulpd xmm3, xmm4 ; y *= (i & 1) ? xp : 1.0

 mulpd xmm1, xmm1 ; xp = xp * xp

 sub ecx, 1 ; Loop counter

 jns L1 ; Repeat ecx+1 times

 movapd [Y], xmm3 ; Store result

The repeat count of the loop is calculated separately outside the loop in order to reduce the
number of instructions inside the loop.

Conditional moves in general purpose registers using CMOVcc and floating point registers

using FCMOVcc are no faster than in XMM registers.

13.5 Conditional moves with AVX512

The AVX512 instruction set supports masked operations controlled by a mask register. A
masked vector instruction will do its operation only on those vector elements for which the
corresponding bit in the mask register is 1. We can rewrite example 13.7 to illustrate this:

// Example 13.10a. Branch in loop using AVX512

float a[16], b[16], c[16], x[16], y[16];

for (int i = 0; i < 16; i++) {

 c[i] = x[i] > y[i] ? a[i] : b[i];

}

The implementation of this with AVX512 is quite efficient:

; Example 13.10b. Conditional move with AVX512

section .text

default rel

vmovaps zmm1, [Y] ; Load vector y

vcmpps k1, zmm1, [X], 1 ; Compare with x. k1 = mask for y < x

vmovaps zmm0, [b] ; Load vector b

vmovaps zmm0{k1}, [a] ; Load vector a for elements with mask bit 1

vmovaps [c], zmm0 ; c = x > y ? a : b

Most vector instructions can be masked under AVX512, for example:

// Example 13.11a. Conditional addition using AVX512

float a[16], b[16];

for (int i = 0; i < 16; i++) {

 if (a[i] < 0) {

 a[i] += b[i];

 }

}

This can be implemented with a masked addition:

; Example 13.11b. Conditional add with AVX512

section .text

default rel

 116

vmovaps zmm1, [a] ; Load vector a

vpxord zmm0, zmm0, zmm0 ; Make zero

vcmpps k1, zmm1, zmm0, 1 ; Compare with zero. k1 = mask for a < 0

vaddps zmm1{k1}, zmm1, [b] ; Masked addition

vmovaps [a], zmm1 ; Store result

Masked instructions can also be used on the smaller XMM and YMM registers if the
instruction set extension AVX512VL is supported. The vpxord instruction may be replaced

by vxorps if instruction set AVX512DQ is supported.

In the above examples, the vector elements for which the mask bit is 0 are unchanged. It is
possible to set the disabled elements to zero, rather than making them unchanged, by
specifying the {z} option:

; Example 13.12. Masking and zeroing

section .text

default rel

mov eax, 000FH ; make constant

kmovw k1, eax ; copy constant to mask register

vmovaps zmm1{k1}, [a] ; conditional move

vmovaps zmm2{k1}{z}, [b] ; conditional move with zeroing

In this example, the first four elements of array a are loaded into zmm1 and the remaining

elements of zmm1 are unchanged. The first four elements of array b are loaded into zmm2

and the remaining elements of zmm2 are set to zero. The zeroing option is useful because it

removes the dependence of zmm2 on the previous value of zmm2. It is recommended to use

the zeroing option whenever it is appropriate because this makes out-or-order execution of
masked instructions more efficient.

The masking comes for free in the sense that the latencies and throughputs of most
instructions are the same with and without masking, regardless of the value of the mask. On
the other hand, you may be wasting time on calculations where the mask is all zeroes. It
may be advantageous to skip time-consuming conditional calculations if the mask is all
zeroes. For example:

// Example 13.13a. Skip calculations if mask is all zeroes

float a[16], b[16];

for (int i = 0; i < 16; i++) {

 if (a[i] >= 0) {

 b[i] = sqrt(a[i]);

 }

}

If it often happens that all elements of the array a are negative then we may skip the time-

consuming square root:

; Example 13.13b. Skip calculations if mask is all zeroes

section .text

default rel

vmovaps zmm1, [a] ; Load vector a

vpxord zmm0, zmm0, zmm0 ; Make zero

vcmpps k1, zmm1, zmm0, 1 ; Compare with zero. k1 = mask for a < 0

kortestw k1, k1 ; test bits of k1

jz L1 ; jump if all zero

vmovaps zmm2, [b] ; Load vector b

vsqrtps zmm2{k1}, zmm1 ; square root of non-negative elements

vmovaps [b], zmm2 ; Store modified b

L1:

 117

A masked instruction can often replace two instructions because it does two things. Even
compare instructions that have a mask register as output can be masked. Compare and test
instructions with a mask register as output and an additional mask applied always have an
implicit zeroing option so that the output mask is zero, rather than unchanged, for bits where
the input mask is zero. The result is a logical AND combination of the comparison result and
the input mask. This means that AND combinations can be implemented more efficiently
than OR combinations. The following example illustrates this:

// Example 13.14a. Use of masks

float a[16], b[16], c[16];

for (int i = 0; i < 16; i++) {

 if (a[i] > 0 || b[i] > 0) {

 c[i] = a[i] + b[i];

 }

 else {

 c[i] = a[i] - b[i];

 }

}

We can convert the OR (||) to AND (&&) in this example by inverting all inputs and outputs

according to the formula: a || b = !(!a && !b). This changes the code to:

// Example 13.14b. Use of masks, convert OR to AND

float a[16], b[16], c[16];

for (int i = 0; i < 16; i++) {

 if (a[i] <= 0 && b[i] <= 0) {

 c[i] = a[i] - b[i];

 }

 else {

 c[i] = a[i] + b[i];

 }

}

This is useful because the AND operation can be optimized by masking the second
compare instruction with the result of the first one:

; Example 13.14c. Efficient use of masks

section .text

default rel

vmovups zmm1, [a] ; Load vector a

vmovups zmm2, [b] ; Load vector b

vpxord zmm0, zmm0, zmm0 ; Make zero

vcmpps k1, zmm1, zmm0, 2 ; k1 = mask for a <= 0

vcmpps k2{k1}, zmm2, zmm0, 2 ; k2 = mask for a <= 0 && b <= 0

vaddps zmm0, zmm1, zmm2 ; a + b

vsubps zmm0{k2}, zmm1, zmm2 ; a - b if mask

vmovups [c], zmm0 ; Store result

13.6 Using vector instructions with other types of data than they are intended
for

Most XMM, YMM and ZMM instructions are 'typed' in the sense that they are intended for a
particular type of data. For example, it does not make sense to use an instruction for adding
integers on floating point data. But instructions that only move data around will work with
any type of data even though they are intended for one particular type of data. This can be
useful if an equivalent instruction does not exist for the type of data you have, or if an
instruction for another type of data is more efficient.

 118

All vector instructions that move, shuffle, blend, or shift data as well as the Boolean
instructions can be used for other types of data than they are intended for. But instructions
that do any kind of arithmetic operation, type conversion, or precision conversion can only
be used for the type of data it is intended for. For example, the FLD instruction does more

than move floating point data, it also converts to a different precision. If you try to use FLD

and FSTP for moving integer data then you may get exceptions for subnormal operands in

case the integer data do not happen to represent a normal floating point number. The
instruction may even change the value of the data in some cases. But the instruction
MOVAPS, which is also intended for moving floating point data, does not convert precision or

anything else. It just moves the data. Therefore, it is possible to use MOVAPS for moving

integer data.

If you are in doubt whether a particular instruction will work with any type of data then check
the software manual from Intel or AMD. If the instruction can generate any kind of "floating
point exception" then it should not be used for any other kind of data than it is intended for.

There is a performance penalty for using the wrong type of instructions on some
processors. This is because the processor may have different data buses or different
execution units for integer and floating point data. Moving data between the integer and
floating point units can take one or more clock cycles depending on the processor, as listed
in table 13.3.

Processor Bypass delay, clock cycles

Intel Core 2 and earlier 1

Intel Nehalem 2

Intel Sandy Bridge and later 0-1

Intel Atom 0

AMD 2

VIA Nano 2-3

Table 13.3. Data bypass delays between integer and floating point
execution units

On some Intel processors, a few floating point instructions are executed in the integer units.
This includes XMM move instructions, Boolean, and some shuffle and pack instructions on
Intel Core 2. These instructions have a bypass delay when mixed with instructions that use
the floating point unit. On most other processors, the execution unit used is in accordance
with the instruction name, e.g. MOVAPS XMM1,XMM2 uses the floating point unit, MOVDQA

XMM1,XMM2 uses the integer unit.

Instructions that read or write memory use a separate unit. The bypass delay from the
memory unit to the floating point unit may be longer than to the integer unit on some
processors, but it does not depend on the type of the instruction. Thus, there is no
difference in latency between MOVAPS XMM0,[MEM] and MOVDQA XMM0,[MEM] on current

processors, but it cannot be ruled out that there will be a difference on future processors.

More details about the execution units of the different processors can be found in manual 3
"The microarchitecture of Intel, AMD and VIA CPUs". Manual 4: "Instruction tables" has lists
of all instructions, indicating which execution units they use.

Using an instruction of a wrong type can be advantageous in cases where there is no
bypass delay and in cases where throughput is more important than latency. Some cases
are described below.

Using the shortest instruction

The instructions for packed single precision floating point numbers, with names ending in
PS, are one byte shorter than equivalent instructions for double precision or integers. For

example, you may use MOVAPS instead of MOVAPD or MOVDQA for moving data to or from

 119

memory or between registers. A bypass delay occurs in some processors when using
MOVAPS for moving the result of an integer instruction to another register, but not when

moving data to or from memory.

Using the most efficient instruction

An efficient way of setting a vector register to zero is PXOR XMM0,XMM0. Most processors

recognize this instruction as being independent of the previous value of XMM0, while not all

processors recognize the same for XORPS and XORPD. The PXOR instruction is therefore

preferred for setting a register to zero.

The integer versions of the Boolean vector instructions (PAND, PANDN, POR, PXOR) can use

more different execution units than the floating point equivalents (ANDPS, etc.) on some AMD

and Intel processors.

Using an instruction that is not available for other types of data

There are many situations where it is advantageous to use an instruction intended for a
different type of data simply because an equivalent instruction does not exist for the type of
data you have.

There are many useful instructions for data shuffling and blending that are available for only
one type of data. These instructions can easily be used for other types of data than they are
intended for. The bypass delay, if any, may be less than the cost of alternative solutions.
The data shuffling instructions are listed in the next paragraph.

13.7 Permuting data

Vectorized code sometimes needs a lot of instructions for swapping and copying vector
elements and putting data into the right positions in the vectors. The need for these extra
instructions reduces the advantage of using vector operations. It is possible to use a
permutation instruction that is intended for a different type of data than you have, as
explained in the previous paragraph. Some instructions that are useful for data permutation
are listed below.

Permute data within each 128-bit lane

Instruction Block size,
bits

Description Instruction
set

PSHUFD 32 General permute SSE2
PSHUFLW 16 Permutes low half of register only SSE2
PSHUFHW 16 Permutes high half of register only SSE2
SHUFPS 32 Permute SSE
SHUFPD 64 Permute SSE2
PSLLDQ 8 Shifts to a different position and sets the original

position to zero
SSE2

PSHUFB 8 General permute Suppl. SSE3
PALIGNR 8 Rotate vector of 8 or 16 bytes Suppl. SSE3
PINSRB 8 Insert byte into vector SSE4.1
PINSRW 16 Insert word into vector SSE
PINSRD 32 Insert dword into vector SSE4.1
PINSRQ 64 Insert qword into vector SSE4.1
INSERTPS 32 Insert dword into vector SSE4.1
VPERMILPS 32 Permute with variable selector AVX
VPERMILPD 64 Permute with variable selector AVX
VPPERM 8 Permute with variable selector AMD XOP

Table 13.4. Permute instructions

 120

Permute data, crossing 128-bit lanes

Instruction Block size,
bits

Description Instruction
set

VPERMW 16 Permute with variable selector AVX512BW
VPERMD 32 Permute with variable selector AVX2
VPERMQ 64 Permute with variable selector AVX2
VPERMPD 32 Permute with variable selector AVX2
VPERMPD 64 Permute with variable selector AVX2
VPERMI/T2B 8 Permute from two sources AVX512VBMI
VPERMI/T2W 16 Permute from two sources AVX512BW
VPERMI/T2D 32 Permute from two sources AVX512
VPERMI/T2Q 64 Permute from two sources AVX512
VPERMI/T2PS 32 Permute from two sources AVX512
VPERMI/T2PD 64 Permute from two sources AVX512
VPERM2I128 128 Permute from two sources AVX2
VPERM2F128 128 Permute from two sources AVX

Table 13.5. Full permute instructions

Combining data from two different sources

Instruction Block size,
bits

Description Instruction
set

SHUFPS 32 Lower 2 dwords from any position of destination
higher 2 dwords from any position of source

SSE

SHUFPD 64 Low qword from any position of destination
high qword from any position of source

SSE2

MOVLPS/D 64 Low qword from memory,
high qword unchanged

SSE/SSE2

MOVHPS/D 64 High qword from memory,
low qword unchanged

SSE/SSE2

MOVLHPS 64 Low qword unchanged,
high qword from low of source

SSE

MOVHLPS 64 Low qword from high of source,
high qword unchanged

SSE

MOVSS 32 Lowest dword from source (register only),
bits 32-127 unchanged

SSE

MOVSD 64 Low qword from source (register only),
high qword unchanged

SSE2

PUNPCKLBW 8 Low 8 bytes from source and destination
interleaved

SSE2

PUNPCKLWD 16 Low 4 words from source and destination
interleaved

SSE2

PUNPCKLDQ 32 Low 2 dwords from source and destination
interleaved

SSE2

PUNPCKLQDQ 64 Low qword unchanged,
high qword from low of source

SSE2

PUNPCKHBW 8 High 8 bytes from source and destination
interleaved

SSE2

PUNPCKHWD 16 High 4 words from source and destination
interleaved

SSE2

PUNPCKHDQ 32 High 2 dwords from source and destination
interleaved

SSE2

PUNPCKHQDQ 64 Low qword from high of destination,
high qword from high of source

SSE2

 121

PACKUSWB 8 Low 8 bytes from 8 words of destination, high 8
bytes from 8 words of source. Converted with
unsigned saturation.

SSE2

PACKSSWB 8 Low 8 bytes from 8 words of destination, high 8
bytes from 8 words of source. Converted with
signed saturation.

SSE2

PACKSSDW 16 Low 4 words from 4 dwords of destination, high
4 words from 4 dwords of source. Converted
with signed saturation.

SSE2

PINSRB 8 Insert byte into vector SSE4.1
PINSRW 16 Insert word into vector SSE
PINSRD 32 Insert dword into vector SSE4.1
INSERTPS 32 Insert dword into vector SSE4.1
PINSRQ 64 Insert qword into vector SSE4.1
VINSERTF128 128 Insert xmmword into vector AVX
PALIGNR 8 Double shift (analogous to SHRD) Suppl. SSE3
PBLENDW 16 Blend from two different sources SSE4.1
BLENDPS 32 Blend from two different sources SSE4.1
BLENDPD 64 Blend from two different sources SSE4.1
PBLENDVB 8 Multiplexer SSE4.1
BLENDVPS 32 Multiplexer SSE4.1
BLENDVPD 64 Multiplexer SSE4.1
VPCMOV 1 Multiplexer AMD XOP
VPBLENDD 32 Multiplexer AVX2
VPBLENDMB 8 Multiplexer with mask as selector AVX512BW
VPBLENDMW 16 Multiplexer with mask as selector AVX512BW
VPBLENDMD 32 Multiplexer with mask as selector AVX512
VPBLENDMQ 64 Multiplexer with mask as selector AVX512
VBLENDMPS 32 Blend with mask as selector AVX512
VBLENDMPD 64 Blend with mask as selector AVX512

Table 13.6. Combine data

Broadcasting data to all elements of a register

Instruction Block
size, bits

Description Instruc-
tion set

PSHUFD xmm2,xmm1,0 32 broadcast dword SSE2
PSHUFD xmm2,xmm1,0EEH 64 broadcast qword SSE2
MOVDDUP 64 broadcast qword SSE3
MOVSLDUP 32 2 copies of each of dword 0 and 2 SSE3
MOVSHDUP 32 2 copies of each of dword 1 and 3 SSE3
VBROADCASTSS 32 broadcast dword from memory AVX
VBROADCASTSS 32 broadcast dword from register AVX2
VBROADCASTSD 64 broadcast qword from memory AVX
VBROADCASTSD 64 broadcast qword from register AVX2
VBROADCASTF128 128 broadcast 16 bytes from memory AVX
VPBROADCASTB 8 broadcast byte from register or memory AVX2
VPBROADCASTW 16 broadcast word from register or memory AVX2
VPBROADCASTD 32 broadcast dword from register or memory AVX2
VPBROADCASTQ 64 broadcast qword from register or memory AVX2
VBROADCASTF32X2 64 broadcast qword from register or memory AVX512DQ
VBROADCASTF32X4 128 broadcast 16 bytes from memory AVX512
VPBROADCASTMB2Q 8 broadcast mask register to vector AVX512CD
VPBROADCASTMW2D 16 broadcast mask register to vector AVX512CD

 122

Table 13.7. Move and broadcast data

In addition to these instructions, many AVX512 instructions have an option to use a
broadcast memory operand.

Merge data from different memory locations into one vector (gather)

Instruction Block
size, bits

Description Instruc-
tion set

VPGATHERDD 32 gather dwords with dword indices AVX2
VPGATHERQD 32 gather dwords with qword indices AVX2
VPGATHERDQ 64 gather qwords with dword indices AVX2
VPGATHERQQ 64 gather qwords with qword indices AVX2
VGATHERDPS 32 gather dwords with dword indices AVX2
VGATHERQPS 32 gather dwords with qword indices AVX2
VGATHERDPD 64 gather qwords with dword indices AVX2
VGATHERQPD 64 gather qwords with qword indices AVX2

Table 13.8. Gather instructions

Vectorized table lookup

Permute instructions can be used for table lookup if the entire table can be contained in one
or a few vector registers. If the table is too big then you have to use the slower gather
instructions for table lookup.

Horizontal addition

The following examples show how to add all elements of a vector

; Example 13.15a. Add 16 elements in vector of 8-bit unsigned integers

; (SSE2)

movaps xmm1, [source] ; Source vector, 16 8-bit integers

pxor xmm0, xmm0 ; 0

psadbw xmm1, xmm0 ; Sum of 8 differences

pshufd xmm0, xmm1, 0EH ; Get bit 64-127 from xmm1

paddd xmm0, xmm1 ; Sum

movd [sum], xmm0 ; Store sum

; Example 13.15b. Add eight elements in vector of 16-bit integers

; using horizontal add instruction(SSSE3)

movaps xmm0, [source] ; Source vector, 8 16-bit integers

phaddw xmm0, xmm0

phaddw xmm0, xmm0

phaddw xmm0, xmm0

movq [sum], xmm0 ; Store sum

; The phaddw instruction is slow. This alternative may be faster:

; Example 13.15c. Add eight elements in vector of 16-bit integers

; avoiding horizontal add instruction(SSE2)

movaps xmm0, [source] ; Source vector, 8 16-bit integers

punpckhqdq xmm1, xmm0 ; Get elements 4, 5, 6, 7

paddw xmm0, xmm1 ; Add four and four elements

pshufd xmm1, xmm0, 1 ; Get element 2, 3

paddw xmm0, xmm1 ; Add two and two elements

pshuflw xmm1, xmm0, 1 ; Get element 1

paddw xmm0, xmm1 ; Add one and one elements

movq [sum], xmm0 ; Store sum

 123

; Example 13.15d. Add eight elements in vector of floats (AVX)

vmovaps ymm0, [source] ; Source vector, 8 32-bit floats

vextractf128 xmm1, ymm0, 1 ; Get upper half

vaddps xmm0, xmm0, xmm1 ; Add

vhaddps xmm0, xmm0, xmm0

vhaddps xmm0, xmm0, xmm0

vmovsd [sum], xmm0 ; Store sum

; The vhaddps instruction is slow. This alternative may be faster:

; Example 13.15e. Add eight elements in vector of 32-bit floats

; avoiding horizontal add instruction (AVX)

vmovaps ymm0, [a] ; Source vector, 8 32-bit floats

vextractf128 xmm1, ymm0, 1 ; Get element 4, 5, 6, 7

vaddps xmm0, xmm0, xmm1 ; Add four elements

vmovhlps xmm1, xmm0, xmm0 ; Get element 2, 3

vaddps xmm0, xmm0, xmm1 ; Add two elements

vshufps xmm1, xmm0, xmm0, 1 ; Get element 1

vaddss xmm0, xmm0, xmm1 ; Add one element

vmovsd [b], xmm0 ; Store sum

13.8 Generating constants

There is no instruction for moving a constant into a vector register. The default way of
putting a constant into a vector register is to load it from a memory constant. This is also the
most efficient way if cache misses are rare. But if cache misses are frequent then we may
look for alternatives.

One alternative is to copy the constant from a static memory location to the stack outside of
the innermost loop. A memory location on the stack is less likely to cause cache misses
than a memory location in a constant data segment. However, this option may not be
possible in library functions.

A second alternative is to store the constant to stack memory using integer instructions and
then load the value from the stack memory to the vector register.

A third alternative is to generate the constant by clever use of various instructions. This
does not use the data cache but takes more space in the code cache. The code cache is
less likely to cause cache misses because the code is contiguous.

The constants may be reused many times as long as the register is not needed for
something else.

The table 13.9 below shows how to make various integer constants in XMM registers. The
same value is generated in all elements in the vector:

Making constants for integer vectors in XMM registers

Value 8 bit 16 bit 32 bit 64 bit

0 pxor xmm0,xmm0 pxor xmm0,xmm0 pxor xmm0,xmm0 pxor xmm0,xmm0

1 pcmpeqw xmm0,xmm0

pabsb xmm0,xmm0

pcmpeqw xmm0,xmm0

psrlw xmm0,15

pcmpeqd xmm0,xmm0

psrld xmm0,31

pcmpeqw xmm0,xmm0

psrlq xmm0,63

2 pcmpeqw xmm0,xmm0

pabsb xmm0,xmm0

paddb xmm0,xmm0

pcmpeqw xmm0,xmm0

psrlw xmm0,15

psllw xmm0,1

pcmpeqd xmm0,xmm0

psrld xmm0,31

pslld xmm0,1

pcmpeqw xmm0,xmm0

psrlq xmm0,63

psllq xmm0,1

3 pcmpeqw xmm0,xmm0

psrlw xmm0,14

packuswb xmm0,xmm0

pcmpeqw xmm0,xmm0

psrlw xmm0,14

pcmpeqd xmm0,xmm0

psrld xmm0,30

pcmpeqw xmm0,xmm0

psrlq xmm0,62

4 pcmpeqw xmm0,xmm0

pabsb xmm0,xmm0

psllw xmm0,2

pcmpeqw xmm0,xmm0

psrlw xmm0,15

psllw xmm0,2

pcmpeqd xmm0,xmm0

psrld xmm0,31

pslld xmm0,2

pcmpeqw xmm0,xmm0

psrlq xmm0,63

psllq xmm0,2

-1 pcmpeqw xmm0,xmm0 pcmpeqw xmm0,xmm0 pcmpeqd xmm0,xmm0 pcmpeqw xmm0,xmm0

 124

-2 pcmpeqw xmm0,xmm0

paddb xmm0,xmm0

pcmpeqw xmm0,xmm0

psllw xmm0,1

pcmpeqd xmm0,xmm0

pslld xmm0,1

pcmpeqw xmm0,xmm0

psllq xmm0,1

Other
value

mov eax,

 value*01010101H

movd xmm0,eax

pshufd xmm0,xmm0,0

mov eax,

 value*10001H

movd xmm0,eax

pshufd xmm0,xmm0,0

mov eax,value

movd xmm0,eax

pshufd xmm0,xmm0,0

mov rax,value

movq xmm0,rax

punpcklqdq xmm0,xmm0

(64 bit mode only)

Table 13.9. Generate integer vector constants

Table 13.10 below shows how to make various floating point constants in XMM registers.
The same value is generated in one or all elements in the vector:

Making floating point constants in XMM registers

Value scalar single scalar double vector single vector double

0.0 xorps xmm0,xmm0 xorps xmm0,xmm0 xorps xmm0,xmm0 xorps xmm0,xmm0

0.5 pcmpeqw xmm0,xmm0

pslld xmm0,26

psrld xmm0,2

pcmpeqw xmm0,xmm0

psllq xmm0,55

psrlq xmm0,2

pcmpeqw xmm0,xmm0

pslld xmm0,26

psrld xmm0,2

pcmpeqw xmm0,xmm0

psllq xmm0,55

psrlq xmm0,2

1.0 pcmpeqw xmm0,xmm0

pslld xmm0,25

psrld xmm0,2

pcmpeqw xmm0,xmm0

psllq xmm0,54

psrlq xmm0,2

pcmpeqw xmm0,xmm0

pslld xmm0,25

psrld xmm0,2

pcmpeqw xmm0,xmm0

psllq xmm0,54

psrlq xmm0,2

1.5 pcmpeqw xmm0,xmm0

pslld xmm0,24

psrld xmm0,2

pcmpeqw xmm0,xmm0

psllq xmm0,53

psrlq xmm0,2

pcmpeqw xmm0,xmm0

pslld xmm0,24

psrld xmm0,2

pcmpeqw xmm0,xmm0

psllq xmm0,53

psrlq xmm0,2

2.0 pcmpeqw xmm0,xmm0

pslld xmm0,31

psrld xmm0,1

pcmpeqw xmm0,xmm0

psllq xmm0,63

psrlq xmm0,1

pcmpeqw xmm0,xmm0

pslld xmm0,31

psrld xmm0,1

pcmpeqw xmm0,xmm0

psllq xmm0,63

psrlq xmm0,1

-2.0 pcmpeqw xmm0,xmm0

pslld xmm0,30

pcmpeqw xmm0,xmm0

psllq xmm0,62

pcmpeqw xmm0,xmm0

pslld xmm0,30

pcmpeqw xmm0,xmm0

psllq xmm0,62

sign bit pcmpeqw xmm0,xmm0

pslld xmm0,31

pcmpeqw xmm0,xmm0

psllq xmm0,63

pcmpeqw xmm0,xmm0

pslld xmm0,31

pcmpeqw xmm0,xmm0

psllq xmm0,63

not
sign bit

pcmpeqw xmm0,xmm0

psrld xmm0,1

pcmpeqw xmm0,xmm0

psrlq xmm0,1

pcmpeqw xmm0,xmm0

psrld xmm0,1

pcmpeqw xmm0,xmm0

psrlq xmm0,1

Other
value
(32 bit
mode)

mov eax, value

movd xmm0,eax

mov eax, value>>32

movd xmm0,eax

psllq xmm0,32

mov eax, value

movd xmm0,eax

shufps xmm0,xmm0,0

mov eax, value>>32

movd xmm0,eax

pshufd xmm0,xmm0,22H

Other
value
(64 bit
mode)

mov eax, value

movd xmm0,eax

mov rax, value

movq xmm0,rax

mov eax, value

movd xmm0,eax

shufps xmm0,xmm0,0

mov rax, value

movq xmm0,rax

shufpd xmm0,xmm0,0

Table 13.10. Generate floating point vector constants

The "sign bit" is a value with the sign bit set and all other bits = 0. This is used for changing
or setting the sign of a variable. For example to change the sign of a vector of doubles in
xmm0:

; Example 13.16. Change sign of 2*double vector

pcmpeqw xmm7, xmm7 ; All 1's

psllq xmm7, 63 ; Shift out the lower 63 1's

xorpd xmm0, xmm7 ; Flip sign bit of xmm0

The "not sign bit" is the inverted value of "sign bit". It has the sign bit = 0 and all other bits =
1. This is used for getting the absolute value of a variable. For example to get the absolute
value of a vector of doubles in xmm0:

; Example 13.17. Absolute value of 2*double vector

pcmpeqw xmm6, xmm6 ; All 1's

psrlq xmm6, 1 ; Shift out the highest bit

andpd xmm0, xmm6 ; Set sign bit to 0

 125

Generating an arbitrary double precision value in 32-bit mode is more complicated. The
method in table 13.10 uses only the upper 32 bits of the 64-bit representation of the
number, assuming that the lower binary decimals of the number are zero or that an
approximation is acceptable. For example, to generate the double value 9.25, we first use a
compiler or assembler to find that the hexadecimal representation of 9.25 is
4022800000000000H. The lower 32 bits can be ignored, so we can do as follows:

; Example 13.18a. Set 2*double vector to arbitrary value (32 bit mode)

mov eax, 40228000H ; High 32 bits of 9.25

movd xmm0, eax ; Move to xmm0

pshufd xmm0, xmm0, 22H ; Get value into dword 1 and 3

In 64-bit mode, we can use 64-bit integer registers:

; Example 13.18b. Set 2*double vector to arbitrary value (64 bit mode)

mov rax, 4022800000000000H ; Full representation of 9.25

movq xmm0, rax ; Move to xmm0

shufpd xmm0, xmm0, 0 ; Broadcast

Note that some assemblers use the very misleading name movd instead of movq for the

instruction that moves 64 bits between a general purpose register and an XMM register.

13.9 Accessing unaligned data and partial vectors

All data that are read or written with vector registers should preferably be aligned by the
vector size. See page 82 for how to align data.

Older processors have a penalty for accessing unaligned data, while modern processors
handle unaligned data almost as fast as aligned data.

There are situations where alignment is not possible, for example if a library function
receives a pointer to an array and it is unknown whether the array is aligned or not.

The following methods can be used for reading unaligned vectors:

Using unaligned read instructions

The instructions MOVDQU, MOVUPS, MOVUPD and LDDQU are all able to read unaligned vectors.

The unaligned read instructions are relatively slow on older Intel processors and on Intel
Atom, but fast on Nehalem and later Intel processors as well as on AMD and VIA
processors.

; Example 13.19. Unaligned vector read

; esi contains pointer to unaligned array

movdqu xmm0, [esi] ; Read vector unaligned

On contemporary processors, there is no penalty for using the unaligned instruction MOVDQU

rather than the aligned MOVDQA if the data are in fact aligned. Therefore, it is convenient to

use MOVDQU if you are not sure whether the data are aligned or not.

Using VEX-prefixed instructions

Instructions with VEX prefix allow unaligned memory operands while the same instructions
without VEX prefix will generate an exception if the operand is not properly aligned:

; Example 13.20. VEX versus non-VEX access to unaligned data

movups xmm1, [esi] ; unaligned operand must be read first

addps xmm0, xmm1

 126

; VEX prefix allows unaligned operand

vaddps xmm0, [esi] ; unaligned operand allowed here

You should never mix VEX and non-VEX code if the YMM or ZMM registers are used. It is
OK to mix AVX and AVX-512 instructions, though. See chapter 13.1.

Partially overlapping reads

Make the first read from the unaligned address and the next read from the nearest following
16-bytes boundary. The first two reads will therefore possibly overlap:

; Example 13.21. First unaligned read overlaps next aligned read

; esi contains pointer to unaligned array

movdqu xmm1, [esi] ; Read vector unaligned

add esi, 10H

and esi, -10H ; = nearest following 16B boundary

movdqa xmm2, [esi] ; Read next vector aligned

Here, the data in xmm1 and xmm2 will be partially overlapping if esi is not divisible by 16.

This, of course, only works if the following algorithm allows the redundant data. The last
vector read can also overlap with the last-but-one if the end of the array is not aligned.

Reading from the nearest preceding 16-bytes boundary

It is possible to start reading from the nearest preceding 16-bytes boundary of an unaligned
array. This will put irrelevant data into part of the vector register, and these data must be
ignored. Likewise, the last read may go past the end of the array until the next 16-bytes
boundary:

; Example 13.22. Reading from nearest preceding 16-bytes boundary

; esi contains pointer to unaligned array

mov eax, esi ; Copy pointer

and esi, -10H ; Round down to value divisible by 16

and eax, 0FH ; Array is misaligned by this value

movdqa xmm1, [esi] ; Read from preceding 16B boundary

movdqa xmm2, [esi+10H] ; Read next block

In the above example, xmm1 contains eax bytes of junk followed by (16-eax) useful bytes.

xmm2 contains the remaining eax bytes of the vector followed by (16-eax) bytes which are

either junk or belonging to the next vector. The value in eax should then be used for

masking out or ignoring the part of the register that contains junk data.

Here we are taking advantage of the fact that vector sizes, cache line sizes and memory
page sizes are always powers of 2. The cache line boundaries and memory page
boundaries will therefore coincide with vector boundaries. While we are reading some
irrelevant data with this method, we will never load any unnecessary cache line, because
cache lines are always aligned by some multiple of 16. There is therefore no cost to reading
the irrelevant data. And, more importantly, we will never get a read fault for reading from
non-existing memory addresses, because data memory is always allocated in pages of
4096 (= 212) bytes or more so that the aligned vector read can never cross a memory page
boundary.

An example using this method is shown in the strlenSSE2.asm example in the appendix

www.agner.org/optimize/asmexamples.zip.

Combine two unaligned vector parts into one aligned vector

The above method can be extended by combining the valid parts of two registers into one
full register. If xmm1 in example 13.22 is shifted right by the unalignment value (eax) and

xmm2 is shifted left by (16-eax) then the two registers can be combined into one vector

containing only valid data.

http://www.agner.org/optimize/asmexamples.zip

 127

Unfortunately, there is no instruction to shift a whole vector register right or left by a variable
count (analogous to shr eax,cl) so we have to use a permutation instruction. The next

example uses a byte permutation instruction, PSHUFB, with appropriate mask values for

shifting a vector register right or left:

; Example 13.23. Combining two unaligned parts into one vector.

; (Supplementary-SSE3 instruction set required)

; This example takes the squareroot of n floats in an unaligned

; array src and stores the result in an aligned array dest.

; C++ code:

; const int n = 100;

; float * src;

; float dest[n];

; for (int i=0; i<n; i++) dest[i] = sqrt(src[i]);

; Define masks for using PSHUFB instruction as shift instruction:

; The 16 bytes from SMask[16+a] will shift right a bytes

; The 16 bytes from SMask[16-a] will shift left a bytes

section .data

align 64

SMask:

 DB -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1

 DB 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

 DB -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1

section .text

default rel

 mov esi, [src] ; Unaligned pointer src

 lea edi, [dest] ; Aligned array dest

 mov eax, esi

 and eax, 0FH ; Get misalignment, a

 movdqu xmm4, [SMask+10H+eax] ; Mask for shift right by a

 movdqu xmm5, [SMask+eax] ; Mask for shift left by 16-a

 and esi, -10H ; Nearest preceding 16B boundary

 xor ecx, ecx ; Loop counter i = 0

L: ; Loop

 movdqa xmm1, [esi+ecx] ; Read from preceding boundary

 movdqa xmm2, [esi+ecx+10H] ; Read next block

 pshufb xmm1, xmm4 ; shift right by a

 pshufb xmm2, xmm5 ; shift left by 16-a

 por xmm1, xmm2 ; combine blocks

 sqrtps xmm1, xmm1 ; compute four squareroots

 movaps [edi+ecx], xmm1 ; Save result aligned

 add ecx, 10H ; Loop to next four values

 cmp ecx, 400 ; 4*n

 jb L ; Loop

Align SMask by 64 if possible to avoid misaligned reads across a cache line boundary.

This method gets easier if the value of the misalignment (eax) is a known constant. The

number of instructions can be reduced by using the PALIGNR instruction when the shift count

is constant.

Now we have discussed several methods for reading unaligned vectors. We also have to
discuss how to write vectors to unaligned addresses. Some of the methods are virtually the
same.

 128

Using unaligned write instructions

The instructions movdqu, movups, and movupd are all able to write unaligned vectors. The

unaligned write instructions are relatively slow on older Intel processors, but fast on
Nehalem and later Intel processors as well as contemporary AMD and VIA processors.

; Example 13.24. Unaligned vector write

; edi contains pointer to unaligned array

movdqu [edi], xmm0 ; Write vector unaligned

Partially overlapping writes

Make the first write to the unaligned address and the next write to the nearest following 16-
bytes boundary. The first two writes will therefore possibly overlap:

; Example 13.25. First unaligned write overlaps next aligned write

; edi contains pointer to unaligned array

movdqu [edi], xmm1 ; Write vector unaligned

add edi, 10H

and edi, 0FH ; = nearest following 16B boundary

movdqa [edi], xmm2 ; Write next vector aligned

Here, the data from xmm1 and xmm2 will be partially overlapping if edi is not divisible by 16.

This, of course, only works if the algorithm can generate the overlapping data. The last
vector write can also overlap with the last-but-one if the end of the array is not aligned. See
the memset example in the appendix www.agner.org/optimize/asmexamples.zip.

Writing the beginning and the end separately

Use non-vector instructions for writing from the beginning of an unaligned array until the first
16-bytes boundary, and again from the last 16-bytes boundary to the end of the array. See
the memcpy example in the appendix www.agner.org/optimize/asmexamples.zip.

Using masked write

The instruction VPMASKMOVD (AVX2) and VMASKMOVPS (AVX), etc. can be used for writing to

the first part of an unaligned array up to the first 16-bytes boundary as well as the last part
after the last 16-bytes boundary.

The non-VEX versions of the masked move instructions, such as MASKMOVDQU are extremely

slow because they are bypassing the cache and writing to main memory (a so-called non-
temporal write). The VEX versions are faster than the non-VEX versions on Intel
processors, but not an AMD Bulldozer and Piledriver processors. These instructions should
definitely be avoided.

The masked move versions in AVX512 are fast and useful.

13.10 Vector operations in general purpose registers

Sometimes it is possible to handle packed data in 32-bit or 64-bit general purpose registers.
You may use this method on processors where integer operations are faster than vector
operations or where appropriate vector operations are not available.

A 64-bit register can hold two 32-bit integers, four 16-bit integers, eight 8-bit integers, or 64
Booleans. When doing calculations on packed integers in 32-bit or 64-bit registers, you
have to take special care to avoid carries from one operand going into the next operand if
overflow is possible. Carry does not occur if all operands are positive and so small that
overflow cannot occur. For example, you can pack four positive 16-bit integers into RAX and

use ADD RAX,RBX instead of PADDW MM0,MM1 if you are sure that overflow will not occur. If

carry cannot be ruled out then you have to mask out the highest bit, as in the following
example, which adds 2 to all four bytes in EAX:

http://www.agner.org/optimize/asmexamples.zip
http://www.agner.org/optimize/asmexamples.zip

 129

 ; Example 13.26. Byte vector addition in 32-bit register

 mov eax, [esi] ; read 4-bytes operand

 mov ebx, eax ; copy into ebx

 and eax, 7f7f7f7fh ; get lower 7 bits of each byte in eax

 xor ebx, eax ; get the highest bit of each byte

 add eax, 02020202h ; add desired value to all four bytes

 xor eax, ebx ; combine bits again

 mov [edi],eax ; store result

Here the highest bit of each byte is masked out to avoid a possible carry from each byte into
the next one when adding. The code is using XOR rather than ADD to put back the high bit

again, in order to avoid carry. If the second addend may have the high bit set as well, it
must be masked too. No masking is needed if none of the two addends have the high bit
set.

It is also possible to search for a specific byte. This C code illustrates the principle by
checking if a 32-bit integer contains at least one byte of zero:

// Example 13.27. Return nonzero if dword contains null byte

inline int dword_has_nullbyte(int w) {

 return ((w - 0x01010101) & ~w & 0x80808080);}

The output is zero if all four bytes of w are nonzero. The output will have 0x80 in the position

of the first byte of zero. If there are more than one bytes of zero then the subsequent bytes
are not necessarily indicated. (This method was invented by Alan Mycroft and published in
1987. I published the same method in 1996 in the first version of this manual unaware that
Mycroft had made the same invention before me).

This principle can be used for finding the length of a zero-terminated string by searching for
the first byte of zero. It is faster than using REPNE SCASB:

; Example 13.28, optimized strlen procedure (32-bit):

_strlen PROC NEAR

; extern "C" int strlen (const char * s);

 push ebx ; ebx must be saved

 mov ecx, [esp+8] ; get pointer to string

 mov eax, ecx ; copy pointer

 and ecx, 3 ; lower 2 bits, check alignment

 jz L2 ; s is aligned by 4. Go to loop

 and eax, -4 ; align pointer by 4

 mov ebx, [eax] ; read from preceding boundary

 shl ecx, 3 ; *8 = displacement in bits

 mov edx, -1

 shl edx, cl ; make byte mask

 not edx ; mask = 0FFH for false bytes

 or ebx, edx ; mask out false bytes

 ; check first four bytes for zero

 lea ecx, [ebx-01010101H] ; subtract 1 from each byte

 not ebx ; invert all bytes

 and ecx, ebx ; and these two

 and ecx, 80808080H ; test all sign bits

 jnz L3 ; zero-byte found

 ; Main loop, read 4 bytes aligned

L1: add eax, 4 ; increment pointer

L2: mov ebx, [eax] ; read 4 bytes of string

 lea ecx, [ebx-01010101H] ; subtract 1 from each byte

 not ebx ; invert all bytes

 and ecx, ebx ; and these two

 130

 and ecx, 80808080H ; test all sign bits

 jz L1 ; no zero bytes, continue loop

L3: bsf ecx, ecx ; find right-most 1-bit

 shr ecx, 3 ; divide by 8 = byte index

 sub eax, [esp+8] ; subtract start address

 add eax, ecx ; add index to byte

 pop ebx ; restore ebx

 ret ; return value in eax

_strlen ENDP

The alignment check makes sure that we are only reading from addresses aligned by 4. The
function may read both before the beginning of the string and after the end, but since all
reads are aligned, we will not cross any cache line boundary or page boundary
unnecessarily. Most importantly, we will not get any page fault for reading beyond allocated
memory because page boundaries are always aligned by 212 or more.

If the SSE2 instruction set is available then it may be faster to use XMM instructions with the
same alignment trick. Example 13.28 as well as a similar function using XMM registers are
provided in the appendix at www.agner.org/optimize/asmexamples.zip. and in my assembly
library at www.agner.org/optimize/asmlib.zip

Other common functions that search for a specific byte, such as strcpy, strchr, memchr

can use the same trick. To search for a byte different from zero, just XOR with the desired
byte as illustrated in this C code:

// Example 13.29. Return nonzero if byte b contained in dword w

inline int dword_has_byte(int w, unsigned char b) {

 w ^= b * 0x01010101;

 return ((w - 0x01010101) & ~w & 0x80808080);}

Note if searching backwards (e.g. strrchr) that the above method will indicate the position

of the first occurrence of b in w in case there is more than one occurrence.

14 Multithreading
There is a limit to how much processing power you can get out of a single CPU. Therefore,
many modern computer systems have multiple CPU cores. The way to make use of multiple
CPU cores is to divide the computing job between multiple threads. The optimal number of
threads is usually equal to the number of CPU cores. The workload should ideally be evenly
divided between the threads.

Multithreading is useful where the code has an inherent parallelism that is coarse-grained.
Multithreading cannot be used for fine-grained parallelism because there is a considerable
overhead cost to starting and stopping threads and to synchronizing the threads. Communi-
cation between threads can be quite costly, although these costs are reduced on newer
processors. The computing job should preferably be divided into threads at the highest
possible level. If the outermost loop can be parallelized, then it might be divided into one
loop for each thread, each doing its share of the whole job.

Thread-local storage should preferably use the stack. Static thread-local memory is
inefficient and should be avoided.

14.1 Simultaneous multithreading

Most modern microprocessors have multiple CPU cores so that they can run multiple
threads simultaneously. Furthermore, many Intel and AMD processors can run two threads

https://www.agner.org/optimize/asmexamples.zip
https://www.agner.org/optimize/asmlib.zip

 131

in each core. The Knight's Corner and Knight's Landing processors can even run four
threads per core. "Hyperthreading" is Intel's term for simultaneous multithreading.

Two or more threads running in the same core will always compete for the same resources,
such as cache, instruction decoder, and execution units. If any of the shared resources are
limiting factors for the performance of a single thread then there is no advantage in running
two threads in each core. On the contrary, each thread may run at less than half speed
because of cache evictions and other resource conflicts. But if a large fraction of the time
goes to cache misses, branch misprediction, or long dependency chains, then each thread
will run at more than half the single-thread speed. In this case there is an advantage to
using simultaneous multithreading, but the performance is not doubled. A thread that shares
the resources of the core with another thread will always run slower than a thread that runs
alone in the core.

The higher the capacity of a CPU core, the higher the advantage of simultaneous
multithreading. The Knight's Landing processor has a quite low capacity so that it is rarely
advantageous to run two threads – and much less four threads – in this processor.
Simultaneous multithreading is more useful on the older Knight's Corner processor because
it has no out-of-order processing capability.

It may be necessary to do experiments in order to determine whether it is advantageous to
use simultaneous multithreading or not in a particular application.

A particular disadvantage of simultaneous multithreading is that a low priority thread may
steal resources from a high priority thread running in the same CPU core. Current operating
systems are not always handling this problem optimally.

See manual 1: "Optimizing software in C++" for more details on multithreading and
simultaneous multithreading.

15 CPU dispatching
We often want to take advantage of the advanced instruction sets such as AVX2 and
AVX512. There is a problem if we want the same program to be able to run on
microprocessors without these instruction sets. The solution is to have multiple versions of
the critical part of the program, each optimized for a different instruction set. The
appropriate version of the code is selected at run time after checking the capabilities of the
CPU it is running on. This is called automatic CPU dispatching.

Manual 1 "Optimizing software in C++" chapter 13 has important advices on CPU
dispatching.

CPU dispatching can be implemented with branches or with a function pointer, as shown in
the following example.

Example 15.1. Function with CPU dispatching

section .data

MyFunctionPoint: DQ MyFunctionDispatch ; Function pointer

section .text

default rel

extern InstructionSet

MyFunction:

 ; Jump through pointer. The code pointer initially points to

 ; MyFunctionDispatch. MyFunctionDispatch changes the pointer

 132

 ; so that it points to the appropriate version of MyFunction.

 ; The next time MyFunction is called, it jumps directly to

 ; the right version of the function

 jmp [MyFunctionPoint]

; Code for each version:

MyFunctionAVX512:

 ; AVX512 version of MyFunction

 ...

 ret

MyFunctionAVX2:

 ; AVX2 version of MyFunction

 ...

 ret

MyFunctionSSE2:

 ; Generic/SSE2 version of MyFunction

 ; (All microprocessors with x64 also support SSE2.

 ; If the program is running in 32-bit mode then you may need a

 ; 80386 compatible generic version)

 ...

 ret

MyFunctionDispatch:

 ; Detect which instruction set is supported.

 ; Function InstructionSet is in asmlib

 push rcx ; Save any registers that may be used

 ; for parameters to MyFunction

 push rdx

 call InstructionSet ; eax indicates CPU instruction set

 lea rdx, [MyFunctionSSE2]

 cmp eax, 13 ; eax >= 13 if AVX2

 jb DispEnd

 lea rdx, [MyFunctionAVX2]

 cmp eax, 16 ; eax >= 16 if AVX512BW/DQ/VL

 jb DispEnd

 lea rdx, [MyFunctionAVX512]

DispEnd:

 ; Save pointer to appropriate version of MyFunction

 mov [MyFunctionPoint], rdx

 mov rax, rdx ; address of function

 pop rdx ; restore registers

 pop rcx

 jmp rax ; Jump to this version of the function

The function InstructionSet detects which instruction set is supported. This function is

provided in the library that can be downloaded from /www.agner.org/optimize/asmlib.zip.
Most operating systems also have functions for this purpose.

15.1 Checking for operating system support for XMM, YMM, and ZMM registers

Unfortunately, the information that can be obtained from the CPUID instruction is not

sufficient for determining whether it is possible to use vector registers. The operating system
has to save these registers during a task switch and restore them when the task is resumed.
The microprocessor can disable the use of the vector registers in order to prevent their use
under old operating systems that do not save these registers. Operating systems that
support the use of XMM registers must set bit 9 of the control register CR4 to enable the use

of XMM registers and indicate its ability to save and restore these registers during task

https://www.agner.org/optimize/asmlib.zip

 133

switches. (Saving and restoring registers is actually faster when XMM registers are
enabled).

Unfortunately, the CR4 register can only be read in privileged mode. Application programs

therefore have a problem determining whether they are allowed to use the XMM registers or
not. According to official Intel documents, the only way for an application program to
determine whether the operating system supports the use of XMM registers is to try to
execute an XMM instruction and see if you get an invalid opcode exception. This is
ridiculous, because not all operating systems, compilers, and programming languages
provide facilities for application programs to catch invalid opcode exceptions. The
advantage of using XMM registers evaporates completely if you have no way of knowing
whether you can use these registers without crashing your software.

These serious problems led me to search for an alternative way of checking if the operating
system supports the use of XMM registers, and fortunately I have found a way that works
reliably. If XMM registers are enabled, then the FXSAVE and FXRSTOR instructions can read

and modify the XMM registers. If XMM registers are disabled, then FXSAVE and FXRSTOR

cannot access these registers. It is therefore possible to check if XMM registers are
enabled, by trying to read and write these registers with FXSAVE and FXRSTOR. The

subroutines in www.agner.org/optimize/asmlib.zip use this method. These subroutines can
be called from assembly as well as from high-level languages, and provide an easy way of
detecting whether XMM registers can be used.

In order to verify that this detection method works correctly with all microprocessors, I first
checked various manuals. The 1999 version of Intel's software developer's manual says
about the FXRSTOR instruction: "The Streaming SIMD Extension fields in the save image

(XMM0-XMM7 and MXCSR) will not be loaded into the processor if the CR4.OSFXSR bit is
not set." AMD's Programmer’s Manual says effectively the same. However, the 2003
version of Intel's manual says that this behavior is implementation dependent. In order to
clarify this, I contacted Intel Technical Support and got the reply, "If the OSFXSR bit in CR4
in not set, then XMMx registers are not restored when FXRSTOR is executed". They further
confirmed that this is true for all versions of Intel microprocessors and all microcode
updates. I regard this as a guarantee from Intel that my detection method will work on all
Intel microprocessors. We can rely on the method working correctly on AMD processors as
well since the AMD manual is unambiguous on this question. It appears to be safe to rely on
this method working correctly on future microprocessors as well, because any micropro-
cessor that deviates from the above specification would introduce a security problem as well
as failing to run existing programs. Compatibility with existing programs is of great concern
to microprocessor producers.

The detection method recommended in Intel manuals has the drawback that it relies on the
ability of the compiler and the operating system to catch invalid opcode exceptions. A
Windows application, for example, using Intel's detection method would therefore have to be
tested in all compatible operating systems, including various Windows emulators running
under a number of other operating systems. My detection method does not have this
problem because it is independent of compiler and operating system. My method has the
further advantage that it makes modular programming easier, because a module,
subroutine library, or DLL using XMM instructions can include the detection procedure so
that the problem of XMM support is of no concern to the calling program, which may even
be written in a different programming language. Some operating systems provide system
functions that tell which instruction set is supported, but the method mentioned above is
independent of the operating system.

It is easier to check for operating support for YMM and ZMM registers. Execute CPUID with

eax = 1. Check that bit 27 and 28 in ecx are both 1 (OSXSAVE and AVX feature flags). If

so, then execute XGETBV with ecx = 0 to get the XFEATURE_ENABLED_MASK. Check that

https://www.agner.org/optimize/asmlib.zip

 134

bit 1 and 2 in eax are both set (XMM and YMM state support). If so, then it is safe to use

YMM registers. ZMM registers are enabled if bit 5, 6, and 7 are also all set.

The above discussion has relied on the following documents:

Intel application note AP-900: "Identifying support for Streaming SIMD Extensions in the
Processor and Operating System". 1999.

Intel application note AP-485: "Intel Processor Identification and the CPUID Instruction".
2002.

"Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference",
1999.

"IA-32 Intel Architecture Software Developer's Manual, Volume 2: Instruction Set
Reference", 2003.

"Intel 64 and IA-32 Architectures Software Developer’s Manual", 2018.

"AMD64 Architecture Programmer’s Manual, Volume 4: 128-Bit Media Instructions", 2003.

"Intel Advanced Vector Extensions Programming Reference", 2008, 2010.

16 Problematic Instructions

16.1 LEA instruction (all processors)

The LEA instruction is useful for many purposes because it can do a shift operation, two

additions, and a move in just one instruction. Example:

; Example 16.1a, LEA instruction

lea rax, [rbx+8*rcx-1000]

is much faster than

; Example 16.1b

mov rax, rcx

shl rax, 3

add rax, rbx

sub rax, 1000

A typical use of LEA is as a three-register addition: lea rax,[rbx+rcx]. The LEA

instruction can also be used for doing an addition or shift without changing the flags.

The processors have no documented addressing mode with a scaled index register and
nothing else. Therefore, an instruction like lea rax,[rbx*2] is actually coded as lea

rax,[rbx*2+00000000H] with an immediate displacement of 4 bytes. The size of this

instruction can be reduced by writing lea rax,[rbx+rbx]. If you happen to have a register

that is zero (like a loop counter after a loop) then you may use it as a base register to
reduce the code size:

; Example 16.2, LEA instruction without base pointer

lea rax, [rbx*4] ; 8 bytes

lea rax, [rcx+rbx*4] ; 4 bytes

The size of the base and index registers can be changed with an address size prefix. The
size of the destination register can be changed with an operand size prefix (See prefixes,

 135

page 26). If the operand size is less than the address size then the result is truncated. If the
operand size is more than the address size then the result is zero-extended.

The shortest version of LEA in 64-bit mode has 32-bit operand size and 64-bit address size,

e.g. LEA EAX,[RBX+RCX], see page 76. Use this version when the result is sure to be less

than 232. The upper half of RBX and RCX are ignored in this case. Use the version with a 64-

bit destination register for address calculation in 64-bit mode when the address may be
bigger than 232.

LEA is slower than addition on some processors. The more complex forms of LEA with scale

factor and offset are slower than the simple form on many processors. See manual 4:
"Instruction tables" for details on each processor.

The preferred version in 32-bit mode has 32-bit operand size and 32-bit address size. LEA

with a 16-bit operand size is slow on AMD processors. LEA with a 16-bit address size in 32-

bit mode should be avoided because the decoding of the address size prefix is slow on
many processors.

LEA can also be used in 64-bit mode for loading a RIP-relative address. A RIP-relative

address cannot be combined with base or index registers.

16.2 INC and DEC

The INC and DEC instructions do not modify the carry flag but they do modify the other

arithmetic flags. Writing to only part of the flags register costs an extra µop on some CPUs.
It can cause a partial flags stalls on some older Intel processors if a subsequent instruction
reads the carry flag or all the flag bits. On all processors, it can cause a false dependence
on the carry flag from a previous instruction.

Use ADD and SUB when optimizing for speed. Use INC and DEC when optimizing for size or

when no penalty is expected.

16.3 XCHG (all processors)

The XCHG register,[memory] instruction is dangerous. This instruction always has an

implicit LOCK prefix which forces synchronization with other processors or cores. This

instruction is therefore very time consuming, and should always be avoided unless the lock
is intended.

The XCHG instruction with register operands may be useful when optimizing for size as

explained on page 73.

16.4 Rotates through carry (all processors)

RCR and RCL with CL or with a count different from one are slow on all processors and

should be avoided.

16.5 Bit test (all processors)

BT, BTC, BTR, and BTS instructions should preferably be replaced by instructions like TEST,

AND, OR, XOR, or shifts on older processors. Bit tests with a memory operand should be

avoided on Intel processors. BTC, BTR, and BTS use 2 µops on AMD processors. Bit test

instructions are useful when optimizing for size.

 136

16.6 LAHF and SAHF (all processors)

LAHF is slow on P4 and P4E. Use SETcc instead for storing the value of a flag.

SAHF is slow on P4E and AMD processors. Use TEST instead for testing a bit in AH. Use

FCOMI if available as a replacement for the sequence FCOM / FNSTSW AX / SAHF.

LAHF and SAHF are not available in 64 bit mode on some of the oldest 64-bit Intel

processors.

16.7 Integer multiplication (all processors)

An integer multiplication takes from 3 to 14 clock cycles, depending on the processor. It is
therefore often advantageous to replace a multiplication by a constant with a combination of
other instructions such as SHL, ADD, SUB, and LEA. For example IMUL EAX,5 can be

replaced by LEA EAX,[RAX+4*RAX] in 64-bit mode or LEA EAX,[EAX+4*EAX] in 32-bit

mode.

16.8 Division (all processors)

Both integer division and floating point division are quite time consuming on all processors.
Various methods for reducing the number of divisions are explained in manual 1:
"Optimizing software in C++". Several methods to improve code that contains division are
discussed below.

Integer division by a power of 2 (all processors)

Integer division by a power of two can be done by shifting right. Dividing an unsigned
integer by 2N:

; Example 16.3. Divide unsigned integer eax by 2^N

shr eax, N

Dividing a signed integer by 2N:

; Example 16.4. Divide signed integer eax by 2^N

cdq

and edx, (1 shl N) - 1 ; (Or: shr edx,32-N)

add eax, edx

sar eax, N

Obviously, the unsigned version is preferred if the dividend is certain to be non-negative.

Integer division by a constant (all processors)

A floating point number can be divided by a constant by multiplying with the reciprocal. If we
want to do the same with integers, we have to scale the reciprocal by 2n and then shift the
product to the right by n. There are various algorithms for finding a suitable value of n and
compensating for rounding errors. The algorithm described below was invented by Terje
Mathisen, Norway, and not published elsewhere. Other methods can be found in the book
Hacker's Delight, by Henry S. Warren, Addison-Wesley 2003, and the paper: T. Granlund
and P. L. Montgomery: Division by Invariant Integers Using Multiplication, Proceedings of
the SIGPLAN 1994 Conference on Programming Language Design and Implementation.

The following algorithm will give you the correct result for unsigned integer division with
truncation, i.e. the same result as the DIV instruction:

b = (the number of significant bits in d) - 1
r = w + b
f = 2r / d

http://www.hackersdelight.org/divcMore.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.2556

 137

If f is an integer then d is a power of 2: go to case A.
If f is not an integer, then check if the fractional part of f is < 0.5
If the fractional part of f < 0.5: go to case B.
If the fractional part of f > 0.5: go to case C.

case A (d = 2b):
result = x SHR b

case B (fractional part of f < 0.5):
round f down to nearest integer
result = ((x+1) * f) SHR r

case C (fractional part of f > 0.5):
round f up to nearest integer
result = (x * f) SHR r

Example:
Assume that you want to divide by 5.
5 = 101B.
w = 32.
b = (number of significant binary digits) - 1 = 2
r = 32+2 = 34
f = 234 / 5 = 3435973836.8 = 0CCCCCCCC.CCC...(hexadecimal)

The fractional part is greater than a half: use case C.
Round f up to 0CCCCCCCDH.

The following code divides EAX by 5 and returns the result in EDX:

; Example 16.5a. Divide unsigned integer eax by 5

mov edx, 0CCCCCCCDH

mul edx

shr edx, 2

After the multiplication, EDX contains the product shifted right 32 places. Since r = 34 you

have to shift 2 more places to get the result. To divide by 10, just change the last line to SHR

EDX,3.

In case B we would have:

; Example 16.5b. Divide unsigned integer eax, case B

add eax, 1

mov edx, f

mul edx

shr edx, b

This code works for all values of x except 0FFFFFFFFH which gives zero because of
overflow in the ADD EAX,1 instruction. If x = 0FFFFFFFFH is possible, then change the code

to:

; Example 16.5c. Divide unsigned integer, case B, check for overflow

 mov edx, f

 add eax, 1

 jc DOVERFL

 mul edx

DOVERFL: shr edx, b

If the value of x is limited, then you may use a lower value of r, i.e. fewer digits. There can
be several reasons for using a lower value of r:

 138

• You may set r = w = 32 to avoid the SHR EDX,b in the end.

• You may set r = 16+b and use a multiplication instruction that gives a 32-bit result
rather than 64 bits. This will free the EDX register:

 ; Example 16.5d. Divide unsigned integer by 5, limited range

 imul eax,0CCCDH

 shr eax,18

• You may choose a value of r that gives case C rather than case B in order to avoid
the ADD EAX,1 instruction

The maximum value for x in these cases is at least 2r-b-1, sometimes higher. You have to do
a systematic test if you want to know the exact maximum value of x for which the code
works correctly.

You may want to replace the multiplication instruction with shift and add instructions as
explained on page 136 if multiplication is slow.

The following example divides EAX by 10 and returns the result in EAX. I have chosen r=17

rather than 19 because it happens to give code that is easier to optimize, and covers the
same range for x. f = 217 / 10 = 3333H, case B: q = (x+1)*3333H:

 ; Example 16.5e. Divide unsigned integer by 10, limited range

 lea ebx, [eax+2*eax+3]

 lea ecx, [eax+2*eax+3]

 shl ebx, 4

 mov eax, ecx

 shl ecx, 8

 add eax, ebx

 shl ebx, 8

 add eax, ecx

 add eax, ebx

 shr eax, 17

A systematic test shows that this code works correctly for all x < 10004H.

The division method can also be used for vector operands. Example 16.5f divides eight
unsigned 16-bit integers by 10:

; Example 16.5f. Divide vector of unsigned integers by 10

section .data

align 16

RECIPDIV times 8 DW 0CCCDH ; Vector of reciprocal divisor

section .text

pmulhuw xmm0, [RECIPDIV]

psrlw xmm0, 3

Repeated integer division by the same value (all processors)

If the divisor is not known at assembly time, but you are dividing repeatedly with the same
divisor, then it is advantageous to use the same method as above. The division is done only
once while the multiplication and shift operations are done for each dividend. A branch-free
variant of the algorithm is provided in the paper by Granlund and Montgomery cited above.

This method is implemented in the asmlib function library and in the C++ vector class library
for signed and unsigned integers as well as for vector registers.

https://www.agner.org/optimize/asmlib.zip
https://github.com/vectorclass

 139

Floating point division (all processors)

Two or more floating point divisions can be combined into one, using the method described
in manual 1: "Optimizing software in C++".

The time it takes to make a floating point division depends on the precision. When x87 style
floating point registers are used, you can make division faster by specifying a lower
precision in the floating point control word. This also speeds up the FSQRT instruction, but

not any other instructions. When XMM registers are used, you do not have to change any
control word. Just use single-precision instructions if your application allows this.

It is not possible to do a floating point division and an integer division at the same time
because they are using the same execution unit on most processors.

Using reciprocal instruction for fast division

The following instructions are calculating the approximate reciprocals of single precision
floating point numbers with various precisions.

instruction precision instruction set

rcpss, rcpps 12 bits SSE

vrcp14ss, vrcp14ps 14 bits AVX512

vrcp28ss, vrcp28ps 28 bits AVX512ER

Table 16.1. Approximate reciprocal instructions

You can make approximate divisions by using one of the fast reciprocal instructions on the
divisor and then multiply with the dividend. The precision can be increased from 12 to 23
bits by using the principle of Newton-Raphson iteration:

x0 = rcpss(d);

x1 = x0 * (2 - d * x0) = 2 * x0 - d * x0 * x0;

where x0 is the first approximation to the reciprocal of the divisor d, and x1 is a better

approximation. You must use this formula before multiplying by the dividend.

; Example 16.6, fast division, single precision (SSE)

movaps xmm1, [divisors] ; load divisors

rcpps xmm0, xmm1 ; approximate reciprocal

mulps xmm1, xmm0 ; newton-raphson formula

mulps xmm1, xmm0

addps xmm0, xmm0

subps xmm0, xmm1

mulps xmm0, [dividends] ; results in xmm0

It is possible to increase the precision further by repeating the Newton-Raphson formula
with double precision, but this is not very advantageous.

16.9 String instructions (all processors)

String instructions without a repeat prefix are too slow and should be replaced by simpler
instructions. The same applies to the LOOP instruction and to JECXZ on some processors.

REP MOVSD and REP STOSD are quite fast if the repeat count is not too small. The largest

word size (DWORD in 32-bit mode, QWORD in 64-bit mode) is preferred. Both source and

destination should be aligned by the word size or better. In many cases, however, it is faster
to use vector registers. Moving data in the largest available registers is faster than REP

MOVSD and REP STOSD in most cases, especially on older processors. See page 149 for

details.

 140

Note that while the REP MOVS instruction writes a word to the destination, it reads the next

word from the source in the same clock cycle. This may cause cache bank conflicts on
some old processors. The easiest way to avoid cache bank conflicts is to align both source
and destination by 8.

On many processors, REP MOVS and REP STOS can perform quite fast by moving 16 bytes

or an entire cache line at a time. This happens only when certain conditions are met.
Depending on the processor, the conditions for fast string instructions are, typically, that the
count must be high, both source and destination must be aligned, the direction must be
forward, the distance between source and destination must be at least the cache line size,
and the memory type for both source and destination must be either write-back or write-
combining (you can normally assume the latter condition is met).

Under these conditions, the speed is as high as you can obtain with vector register moves.

While the string instructions can be quite convenient, it must be emphasized that other
solutions are faster in many cases. If the above conditions for fast move are not met, then
there is a lot to gain by using other methods. See page 149 for alternatives to REP MOVS.

REP LOADS, REP SCAS, and REP CMPS take more time per iteration than simple loops. See

page 129 for alternatives to REPNE SCASB.

16.10 Vectorized string instructions (processors with SSE4.2)

The SSE4.2 instruction set contains four very powerful instructions for string search and
compare operations: PCMPESTRI, PCMPISTRI, PCMPESTRM, PCMPISTRM. There are two vector

operands each containing a string and an immediate operand determining what operation to
do on these strings. These four instructions can all do each of the following kinds of
operations, differing only in the input and output operands:

• Find characters from a set: Finds which of the bytes in the second vector operand
belong to the set defined by the bytes in the first vector operand, comparing all 256
possible combinations in one operation.

• Find characters in a range: Finds which of the bytes in the second vector operand
are within the range defined by the first vector operand.

• Compare strings: Determine if the two strings are identical.

• Substring search: Finds all occurrences of a substring defined by the first vector
operand in the second vector operand.

The lengths of the two strings can be specified explicitly (PCMPESTRx) or implicitly with a

terminating zero (PCMPISTRx). The latter is faster on current Intel processors because it has

fewer input operands. Any terminating zeroes and bytes beyond the ends of the strings are
ignored. The output can be a bit mask or byte mask (PCMPxSTRM) or an index (PCMPxSTRI).

Further output is provided in the following flags. Carry flag: result is nonzero. Sign flag: first
string ends. Zero flag: second string ends. Overflow flag: first bit of result.

These instructions are very efficient for various string parsing and processing tasks because
they do large and complicated tasks in a single operation. However, the current
implementations are slower than the best alternatives for simple tasks such as strlen and

strcopy.

Examples can be found in my function library at www.agner.org/optimize/asmlib.zip.

16.11 WAIT instruction (all processors)

The WAIT instruction (also known as FWAIT) has three functions:

https://www.agner.org/optimize/asmlib.zip

 141

A. The old 8087 coprocessor requires a WAIT before every floating point instruction to make

sure the coprocessor is ready to receive it.

B. WAIT is used for coordinating memory access between the floating point unit and the

integer unit. Examples:

; Example 16.7. Uses of WAIT:

B1: fistp [mem32]

 wait ; wait for FPU to write before..

 mov eax,[mem32] ; reading the result with the integer unit

B2: fild [mem32]

 wait ; wait for FPU to read value..

 mov [mem32],eax ; before overwriting it with integer unit

B3: fld qword [ESP]

 wait ; prevent an accidental interrupt from..

 add esp,8 ; overwriting value on stack

C. WAIT is sometimes used to check for exceptions. It will generate an interrupt if an

unmasked exception bit in the floating point status word has been set by a preceding
floating point instruction.

Regarding A:
The functionality in point A is never needed on any other processors than the old 8087.
Unless you want your 16-bit code to be compatible with the 8087, you should tell your
assembler not to put in these WAIT's by specifying a higher processor. An 8087 floating

point emulator under DOS also inserts WAIT instructions. You should therefore tell your

assembler not to generate emulation code unless you need it.

Regarding B:
WAIT instructions to coordinate memory access are definitely needed on the 8087 and

80287 coprocessors but not on later processors.

Regarding C:
The assembler automatically inserts a WAIT for this purpose before the following

instructions: FCLEX, FINIT, FSAVE, FSTCW, FSTENV, FSTSW. You can omit the WAIT by writing

FNCLEX, etc. My tests show that the WAIT is unnecessary in most cases because these

instructions without WAIT will still generate an interrupt on exceptions except for FNCLEX and

FNINIT on the 80387. There is some inconsistency about whether the IRET from the

interrupt points to the FN.. instruction or to the next instruction.

Almost all other x87 floating point instructions will also generate an interrupt if a previous
x87 instruction has set an unmasked exception bit, so the exception is likely to be detected
sooner or later anyway. You may insert a WAIT after the last x87 instruction in your program

to be sure to catch all exceptions.

16.12 FCOM + FSTSW AX (all processors)

The FNSTSW instruction is very slow on all processors. Most processors have FCOMI

instructions to avoid the slow FNSTSW. Using FCOMI instead of the common sequence FCOM /

FNSTSW AX / SAHF will save 4 - 8 clock cycles. You should therefore use FCOMI to avoid

FNSTSW wherever possible, even in cases where it costs some extra code.

It is sometimes faster to use integer instructions for comparing floating point values, as
described on page 147 and 149.

 142

16.13 FPREM (all processors)

The FPREM and FPREM1 instructions are slow on all processors. You may replace it by the

following algorithm: Multiply by the reciprocal divisor, get the fractional part by subtracting
the truncated value, and then multiply by the divisor.

Some documents say that these instructions may give incomplete reductions and that it is
therefore necessary to repeat the FPREM or FPREM1 instruction until the reduction is

complete. I have tested this on several processors beginning with the old 8087 and I have
found no situation where a repetition of the FPREM or FPREM1 was needed.

16.14 FRNDINT (all processors)

This instruction is slow on all processors. Replace it by:

; Example 16.8.

 fistp qword [TEMP]

 fild qword [TEMP]

This code is faster despite a possible penalty for attempting to read from [TEMP] before the

write is finished on older processors. You may put other instructions in between in order to
avoid this penalty.

The conversion instructions such as CVTSS2SI and CVTTSS2SI. should be used instead on

processors with SSE.

16.15 FSCALE and exponential function (all processors)

FSCALE is slow on all processors. Computing integer powers of 2 can be done much faster

by inserting the desired power in the exponent field of the floating point number. To
calculate 2N, where N is a signed integer, select from the examples below the one that fits
your range of N:

Single precision, for |N| < 27-1:

; Example 16.9a. 2 to the power of i, single precision

 mov eax, [N]

 shl eax, 23

 add eax, 3f800000h

 movd xmm0, eax

Single precision, for |N| < 210-1:

; Example 16.9b. 2 to the power of i, double precision

 mov eax, [N]

 shl eax, 20

 add eax, 3ff00000h

 movd xmm0, eax

 psllq xmm0, 32

16.16 FPTAN (all processors)

According to the manuals, FPTAN returns two values, X and Y, and leaves it to the

programmer to divide Y with X to get the result; but in fact it always returns 1 in X so you can
save the division. My tests show that on all 32-bit Intel processors with floating point unit or
coprocessor, FPTAN always returns 1 in X regardless of the argument. If you want to be

absolutely sure that your code will run correctly on all processors, then you may test if X is
1, which is faster than dividing with X. The Y value may be very high, but never infinity, so
you do not have to test if Y contains a valid number if you know that the argument is valid.

 143

When optimizing for speed, it is usually faster to use a library function with SSE2.

16.17 FSQRT, SQRTSS

The following instructions are available for calculation of reciprocal square roots:

instruction precision instruction set

rsqrtss, rsqrtps 12 bits, float SSE

vrsqrt14ss, vrsqrt14ps 14 bits, float AVX512

vrsqrt14sd, vrsqrt14pd 14 bits, double AVX512

vrsqrt28ss, vrsqrt28ps 28 bits, float AVX512ER

vrsqrt28sd, vrsqrt28pd 28 bits, double AVX512ER

Table 16.2. Approximate reciprocal square root instructions

A fast way of calculating an approximate square root is to multiply the reciprocal square root
of x by x:

sqrt(x) = x * rsqrt(x)

The reciprocal square root instructions give the reciprocal square root with a precision of at
least 12 bits. You can improve the precision to 23 bits by using the Newton-Raphson
iteration formula:

x0 = rsqrtss(a)

x1 = 0.5 * x0 * (3 - (a * x0) * x0)

where x0 is the first approximation to the reciprocal square root of a, and x1 is a better

approximation. The order of evaluation is important. You must use this formula before
multiplying with x to get the square root.

16.18 FLDCW

Many processors have a serious stall after the FLDCW instruction if followed by any floating

point instruction which reads the control word (which almost all floating point instructions
do).

When C or C++ code is compiled without SSE2, it often generates a lot of FLDCW

instructions because conversion of floating point numbers to integers is done with truncation
while other floating point instructions use rounding. After translation to assembly, you can
improve this code by using rounding instead of truncation where possible, or by moving the
FLDCW out of a loop where truncation is needed inside the loop.

A better solution is to compile for the SSE or SSE2 instruction set and use truncation
instructions such as CVTTSS2SI.

16.19 MASKMOV instructions

The masked memory write instructions MASKMOVQ and MASKMOVDQU are extremely slow

because they are bypassing the cache and writing to main memory (a so-called non-
temporal write).

The VEX-coded alternatives VPMASKMOVD, VPMASKMOVQ, VMASKMOVPS, VMASKMOVPD are

writing to the cache, and therefore much faster on Intel processors. The VEX versions are
still extremely slow on AMD Bulldozer and Piledriver processors.

These instructions should be avoided at all costs. The AVX512 instruction set provides
masked writes, which are much faster. See also chapter 13.9 for alternative methods.

 144

16.20 RDRAND and RDSEED instructions

These instructions are sampling physical noise over a period of time in order to generate an
unpredictable random number. These instructions may take hundreds, or even thousands,
of clock cycles if called repeatedly. A program that needs many random numbers should
use a pseudo random number generator and use RDRAND or RDSEED only to generate an

initial seed for this random number generator.

17 Special topics

17.1 XMM versus floating point registers

Processors with the SSE instruction set can do single precision floating point calculations in
XMM registers. Processors with the SSE2 instruction set can also do double precision
calculations in XMM registers. Floating point calculations are approximately equally fast in
XMM registers and the old x87 floating point registers. The decision of whether to use the
x87 floating point registers ST(0) - ST(7) or XMM registers depends on the following

factors.

Advantages of using x87 registers:

• Compatible with old processors without SSE or SSE2.

• Compatible with old operating systems without XMM support.

• Supports long double precision.

• Intermediate results are calculated with long double precision.

• Precision conversions are free in the sense that they require no extra instructions
and take no extra time. You may use ST() registers for expressions where operands
have mixed precision.

• Mathematical functions such as logarithms and trigonometric functions are
supported by hardware instructions. These functions are useful when optimizing for
size, but not faster than library functions using XMM registers.

• Conversions to and from decimal numbers can use the FBLD and FBSTP instructions

when optimizing for size, but these instructions are slow.

• Floating point instructions using ST() registers are smaller than the corresponding
instructions using XMM registers. For example, FADD ST(0),ST(1) is 2 bytes,

while ADDSD XMM0,XMM1 is 4 bytes.

Advantages of using XMM, YMM, or ZMM registers:

• Can do multiple operations with a single vector instruction.

• Avoids the need to use FXCH for getting the desired register to the top of the stack.

• No need to clean up the register stack after use.

• Can be used together with MMX instructions.

 145

• No need for memory intermediates when converting between integers and floating
point numbers.

• 64-bit systems have 16 XMM/YMM or 32 ZMM registers, but only 8 ST() registers.

• ST() registers cannot be used in device drivers in 64-bit Windows.

• The instruction set for ST() registers is no longer developed. The instructions will
probably still be supported for many years for the sake of backwards compatibility,
but the instructions may work less efficiently in future processors.

17.2 MMX versus XMM registers

Integer vector instructions can use either the 64-bit MMX registers or the 128-bit XMM
registers in processors with SSE2.

Advantages of using MMX registers:

• Compatible with older microprocessors since the PMMX.

• Compatible with old operating systems without XMM support.

• No need for data alignment.

Advantages of using XMM registers:

• The number of elements per vector is doubled in XMM registers as compared to
MMX registers, and increased further in YMM and ZMM registers.

• MMX registers cannot be used together with ST() registers.

• A series of MMX instructions must end with EMMS.

• 64-bit systems have 16 or 32 XMM registers, but only 8 MMX registers.

• MMX registers cannot be used in device drivers in 64-bit Windows.

• The instruction set for MMX registers is no longer developed and is going out of use.
The MMX registers will probably still be supported in many years for reason of
backwards compatibility.

17.3 XMM versus YMM and ZMM registers

The 128-bit XMM registers are extended to 256 or 512 bits in the YMM and ZMM registers
when the newer instruction sets are available. See page 106 for details. Advantages of
using the AVX instruction set and YMM or ZMM registers:

• More elements per vector

• Non-destructive 3-operand version of all XMM, YMM, and ZMM instructions

• Masked instructions are available with AVX512

Advantages of using XMM registers:

 146

• Compatible with older processors

• There is a penalty for switching between VEX instructions and XMM instructions
without VEX prefix, see page 107. The programmer may inadvertently mix VEX and
non-VEX instructions.

• YMM and ZMM registers cannot be used in device drivers without saving everything
with XSAVE / XRESTOR., see page 110.

17.4 Freeing floating point registers

You have to free all used x87 style floating point registers before exiting a subroutine,
except for any register used for the result.

The fastest way of freeing one register is FSTP ST. To free two registers you may use either

FCOMPP or twice FSTP ST, whichever fits best into the decoding sequence or port load.

It is not recommended to use FFREE.

17.5 Transitions between floating point and MMX instructions

It is not possible to use 64-bit MMX registers and 80-bit floating point ST() registers in the
same part of the code. You must issue an EMMS instruction after the last instruction that uses

MMX registers if there is a possibility that later code uses floating point registers. You may
avoid this problem by using 128-bit XMM registers instead.

On PMMX there is a high penalty for switching between floating point and MMX instructions.
The first floating point instruction after an EMMS takes approximately 58 clocks extra, and the

first MMX instruction after a floating point instruction takes approximately 38 clocks extra.
There is no such penalty on processors with out-of-order execution.

17.6 Converting from floating point to integer

All conversions between x87 style floating point registers and integer registers must go via a
memory location:

; Example 17.1.

fistp dword [TEMP]

mov eax, [TEMP]

On older processors, and especially the P4, this code is likely to have a penalty for
attempting to read from [TEMP] before the write to [TEMP] is finished. It doesn't help to put

in a WAIT. It is recommended that you put in other instructions between the write to [TEMP]

and the read from [TEMP] if possible in order to avoid this penalty. This applies to all the

examples that follow.

The specifications for the C and C++ language requires that conversion from floating point
numbers to integers use truncation rather than rounding. The method used by most C
libraries is to change the floating point control word to indicate truncation before using an
FISTP instruction, and changing it back again afterwards. This method is very slow on all

processors. On many processors, the floating point control word cannot be renamed, so all
subsequent floating point instructions must wait for the FLDCW instruction to retire. See page

143.

You can avoid all these problems by using XMM registers instead of floating point registers

and use the CVT.. instructions to avoid the memory intermediate on processors with SSE2.

 147

17.7 Using integer instructions for floating point operations

It is often advantageous to use integer instructions for doing simple floating point
operations, because integer instructions are generally faster than floating point instructions.
The most obvious example is moving data. For example

; Example 17.2a. Moving floating point data

fld qword [esi]

fstp qword [edi]

can be replaced by:

; Example 17.2b

mov rax,[rsi]

mov [rdi],rax

Many other manipulations are possible if you know how floating point numbers are
represented in binary format. See the chapter "Using integer operations for manipulating
floating point variables" in manual 1: "Optimizing software in C++".

The bit positions are shown in this table:

precision mantissa always 1 exponent sign

single (32 bits) bit 0 - 22 bit 23 - 30 bit 31

double (64 bits) bit 0 - 51 bit 52 - 62 bit 63

long double (80 bits) bit 0 - 62 bit 63 bit 64 - 78 bit 79

Table 17.1. Floating point formats

From this table we can find that the value 1.0 is represented as 3F80,0000H in single
precision format, 3FF0,0000,0000,0000H in double precision, and
3FFF,8000,0000,0000,0000H in long double precision.

It is possible to generate simple floating point constants without using data in memory as
explained on page 123.

Testing if a floating point value is zero

To test if a floating point number is zero, we have to test all bits except the sign bit, which
may be either 0 or 1. For example:

; Example 17.3a. Testing floating point value for zero

fld dword [ebx]

ftst

fnstsw ax

and ah, 40h

jnz IsZero

can be replaced by

; Example 17.3b. Testing floating point value for zero

mov eax, [ebx]

add eax, eax

jz IsZero

where the ADD EAX,EAX shifts out the sign bit. Double precision floats have 63 bits to test,

but if subnormal numbers can be ruled out, then you can be certain that the value is zero if
the exponent bits are all zero. Example:

 148

; Example 17.3c. Testing double value for zero

fld qword [ebx]

ftst

fnstsw ax

and ah, 40h

jnz IsZero

can be replaced by

; Example 17.3d. Testing double value for zero

mov eax, [ebx+4]

add eax, eax

jz IsZero

Manipulating the sign bit

A floating point number is negative if the sign bit is set and at least one other bit is set.
Example (single precision):

; Example 17.4. Testing floating point value for negative

mov eax, [NumberToTest]

cmp eax, 80000000H

ja IsNegative

You can change the sign of a floating point number simply by flipping the sign bit. This is
useful when XMM registers are used, because there is no XMM change sign instruction.
Example:

; Example 17.5. Change sign of four single-precision floats in xmm0

cmpeqd xmm1, xmm1 ; generate all 1's

pslld xmm1, 31 ; 1 in the leftmost bit of each dword only

xorps xmm0, xmm1 ; change sign of xmm0

You can get the absolute value of a floating point number by AND'ing out the sign bit:

; Example 17.6. Absolute value of four single-precision floats in xmm0

cmpeqd xmm1, xmm1 ; generate all 1's

psrld xmm1,1 ; 1 in all but the leftmost bit of each dword

andps xmm0 ,xmm1 ; set sign bits to 0

You can extract the sign bit of a floating point number:

; Example 17.7. Generate a bit-mask if single-precision floats in

; xmm0 are negative or -0.0

psrad xmm0,31 ; copy sign bit into all bit positions

Manipulating the exponent

You can multiply a non-zero number by a power of 2 by simply adding to the exponent:

; Example 17.8. Multiply vector by power of 2

movaps xmm0, [x] ; four single-precision floats

movdqa xmm1, [n] ; four 32-bit positive integers

pslld xmm1, 23 ; shift integers into exponent field

paddd xmm0, xmm1 ; x * 2^n

Likewise, you can divide by a power of 2 by subtracting from the exponent. Note that this
code does not work if X is zero or if overflow or underflow is possible.

 149

Manipulating the mantissa

You can convert an integer to a floating point number in an interval of length 1.0 by putting
bits into the mantissa field. The following code computes x = n / 232, where n in an unsigned
integer in the interval 0 ≤ n < 232, and the resulting x is in the interval 0 ≤ x < 1.0.

; Example 17.9. Convert bits to value between 0 and 1

section .data

one dq 1.0

x dq 0

n dd 0

section .text

movsd xmm0, [one] ; 1.0, double precision

movd xmm1, [n] ; n, 32-bit unsigned integer

psllq xmm1, 20 ; align n left in mantissa field

orpd xmm1, xmm0 ; combine mantissa and exponent

subsd xmm1, xmm0 ; subtract 1.0

movsd [x], xmm1 ; store result

In the above code, the exponent from 1.0 is combined with a mantissa containing the bits of
n. This gives a double-precision value in the interval 1.0 ≤ x < 2.0. The SUBSD instruction

subtracts 1.0 to get x into the desired interval. This is useful for random number generators.

Comparing numbers

Thanks to the fact that the exponent is stored in the biased format and to the left of the
mantissa, it is possible to use integer instructions for comparing positive floating point
numbers. Example (single precision):

; Example 17.10a. Compare single precision float numbers

fld dword [a]

fcomp dword [b]

fnstsw ax

and ah, 1

jnz ASmallerThanB

can be replaced by:

; Example 17.10b. Compare single precision float numbers

mov eax, [a]

mov ebx, [b]

cmp eax, ebx

jb ASmallerThanB

This method works only if you are certain that none of the numbers have the sign bit set.
You may compare absolute values by shifting out the sign bit of both numbers. For double-
precision numbers, you can make an approximate comparison by comparing the upper 32
bits using 32-bit integer instructions.

17.8 Moving blocks of data

There are several ways of moving large blocks of data. The most common methods are:

1. REP MOVS instruction.

2. If data are aligned: Read and write in a loop with the largest available register size.

3. If size is constant: inline move instructions.

 150

4. If data are misaligned: First move as many bytes as required to make the destination
aligned. Then read unaligned and write aligned in a loop with the largest available
register size.

5. If data are misaligned: Read aligned, shift to compensate for misalignment and write
aligned.

6. If the data size is too big for caching, use non-temporal writes to bypass the cache.
Shift to compensate for misalignment, if necessary.

Which of these methods is fastest depends on the microprocessor, the data size and the
alignment. If a large fraction of the CPU time is used for moving data, then it is important to
select the fastest method. I will therefore discuss the advantages and disadvantages of
each method here.

The REP MOVS instruction (1) is a simple solution which is useful when optimizing for code

size rather than for speed. This instruction is implemented as microcode in the CPU. The
microcode implementation may actually use one of the other methods internally. In some
cases it is well optimized, in other cases not. Usually, the REP MOVS instruction has a large

overhead for choosing and setting up the right method. Therefore, it is not optimal for small
blocks of data. For large blocks of data, it may be quite efficient when certain conditions for
alignment etc. are met. These conditions depend on the specific CPU (see page 140). On
Intel Nehalem and later processors, this is sometimes as fast as the other methods when
the memory block is large.

Aligned moves with the largest available registers (2) is an efficient method on all
processors. Therefore, it is worthwhile to align big blocks of data and, if necessary, pad the
data in the end to make the size of each data block a multiple of the register size.

Inlined move instructions (3) is often the fastest method if the size of the data block is
known at compile time, and the alignment is known. Part of the block may be moved in
smaller registers to fit the specific alignment and data size. The loop of move instructions
may be fully rolled out if the size is very small.

Unaligned read and aligned write (4) is fast on most newer processors. Typically, older
processors have slow unaligned reads while newer processors have a better cache
interface that optimizes unaligned read. The unaligned read method is reasonably fast on all
newer processors, and on many processors it is the fastest method.

The aligned read - shift - aligned write method (5) is the fastest method for moving
unaligned data on older processors. On processors with SSE2, use PSRLDQ/PSLLDQ/POR. On

processors with SSSE3, use PALIGNR (except on Bobcat, where PALIGNR is particularly

slow). It is necessary to have 16 different branches for the 16 possible shift counts. This can
be avoided on AMD processors with XOP instructions, by using the VPPERM instruction, but

the unaligned read method (4) may be at least as fast on these processors.

Using non-temporal writes (6) to bypass the cache can be advantageous when moving very
large blocks of data. This is not always faster than the other methods, but it saves the cache
for other purposes. As a rule of thumb, it can be good to use non-temporal writes when
moving data blocks bigger than half the size of the last-level cache.

As you can see, it can be very difficult to choose the optimal method in a given situation.
The best advice I can give for a universal memcpy function, based on my testing, is as

follows:

• On Intel Wolfdale and earlier, Intel Atom, AMD K8 and earlier, and VIA Nano, use
the aligned read - shift - aligned write method (5).

 151

• On Intel Nehalem and later, method (4) is up to 33% faster than method (5).

• On AMD K10 and later and Bobcat, use the unaligned read - aligned write method
(4).

• The non-temporal write method (6) can be used for data blocks bigger than half the
size of the largest-level cache.

Another consideration is what size of registers to use for moving data. The size of vector
registers has been increased from 64 bits to 128, 256, and 512 bits with various instruction
set extensions. Historically, the first processors to support a new register size have often
had limited bandwidth for operations on the larger registers. Some or all of the execution
units, physical registers, data buses, read ports and write ports have had the size of the
previous version, so that an operation on the largest register size is split internally into two
operations of half the size. The first processors with SSE would split a 128-bit read into two
64-bit reads; and the first processors with AVX would split a 256-bit read into two 128-bit
reads. Therefore, there is no increase in bandwidth by using the largest registers on these
processors. In some cases, e.g. AMD Bulldozer, there is significant decrease in
performance by using the 256-bit registers. In these cases, it is not advantageous to use a
new register size for moving data until the second generation of processors that support it.
The use of 512-bit registers is advantageous on the first Intel processors to support 512-bit
registers.

There is a further complication when copying blocks of memory, namely false memory
dependence. Whenever the CPU reads a piece of data from memory, it checks if it overlaps
with any preceding write. If this is the case, then the read must wait for the preceding write
to finish or it must do a store forwarding. Unfortunately, the CPU may not be able to check
the full physical address, but only the offset within the memory page, i.e. the lower 12 bits of
the address. If the lower 12 bits of the read address overlaps with the lower 12 bits of any
unfinished preceding write then the read is delayed. This happens when the source address
relative to the destination address is a little less than a multiple of 4 kbytes. This false
memory dependence can slow down memory copying by a factor of 3 - 4 in the worst case.
The problem can be avoided by copying backwards, from the end to the beginning of the
memory block, in the case where there is a false memory dependence. This is of course
only allowed when no part of the source and the destination memory blocks truly overlaps.

The asmlib library includes optimized functions for moving data, and automatically selecting
the optimal method for the processor it is running on.

Prefetching

It is sometimes advantageous to prefetch data items before they are needed, and some
manuals recommend this. However, modern processors have automatic prefetching. The
processor hardware is constructed so that it can predict which data addresses will be
needed next, and prefetch it automatically, when data items are accessed in a linear
manner, both forwards and backwards. Explicit prefetching is rarely needed. The optimal
prefetch strategy is processor specific. Therefore, it is easier to rely on automatic
prefetching. Explicit prefetching is particularly bad on Intel Ivy Bridge and AMD Jaguar
processors.

Moving data on future processors

We must bear in mind that the code that is written today will run on the processors of
tomorrow. Therefore, it is important to optimize for future processors as explained in the
section "CPU dispatch strategies" in Manual 1: "Optimizing software in C++". Therefore, I
will discuss here which method is likely to be fastest on future processors. First, we can
predict that the AVX512 (and later) instruction sets are likely to be supported on all future
high-end Intel x86 processors. Smaller low power processors with 128 or 256-bit execution
units can implement a 512-bit instruction as two 256-bit µops or four 128-bit µops. All
processors with AVX will have reasonably fast unaligned read operations because the AVX
instructions have few restrictions on alignment. As the trend goes towards having two read

https://www.agner.org/optimize/#asmlib

 152

ports, the memory read operations are unlikely to be a bottleneck, even if unaligned.
Therefore, we can expect that the unaligned read method (method 4) will be fast on future
processors.

Many modern processors have optimized the REP MOVS instruction (method 1) to use the

largest available register size and the fastest method, at least in simple cases. But there are
still cases where the REP MOVS method is slow, for example for certain misalignment cases

and false memory dependence. However, the REP MOVS instruction has the advantage that

it will probably use the largest available register size on processors in a more distant future
with registers bigger than 512 bits. As instructions with the expected future register sizes
cannot yet be coded and tested, the REP MOVS instruction is the only way we can write code

today that will take advantage of future extensions to the register size. Therefore, it may be
useful to use the REP MOVS instruction for favorable cases of large aligned memory blocks.

It would be useful if CPU vendors provided information in the CPUID instruction to help
select the optimal code or, alternatively, implemented the best method as microcode in the
REP MOVS instruction.

Examples of the abovementioned methods can be found in the function library at
www.agner.org/optimize/asmlib.zip. See manual 1: "Optimizing software in C++" for a
discussion of automatic CPU dispatching, and for a comparison of available function
libraries.

Processor-specific advice on improving memory access can be found in Intel's "Intel 64 and
IA-32 Architectures Optimization Reference Manual" and AMD's "Software Optimization
Guide for AMD Family xx Processors".

17.9 Self-modifying code

The penalty for executing a piece of code immediately after modifying it is approximately 19
clocks for P1, 31 for PMMX, and 150-300 for PPro, P2, P3, PM. The P4 will purge the entire
trace cache after self-modifying code. The 80486 and earlier processors require a jump
between the modifying and the modified code in order to flush the code cache.

To get permission to modify code in a protected operating system you need to call special
system functions: In 16-bit Windows call ChangeSelector, in 32-bit and 64-bit Windows call

VirtualProtect and FlushInstructionCache. The trick of putting the code in a data

segment does not work in newer systems that use the execute disable bit.

Self-modifying code is not considered good programming practice. It should be used only if
the gain in speed is substantial and the modified code is executed so many times that the
advantage outweighs the penalties for using self-modifying code.

Self-modifying code can be useful for example in a math program where a user-defined
function has to be evaluated many times. The program may contain a small compiler that
converts the function to binary code.

18 Measuring performance

18.1 Testing speed

Many compilers have a profiler that makes it possible to measure how many times each
function in a program is called and how long time it takes. This is very useful for finding any
hot spot in the program. If a particular hot spot is taking a high proportion of the total
execution time, then this hot spot should be the target for your optimization efforts.

https://www.agner.org/optimize/asmlib.zip

 153

Many profilers are not very accurate, and certainly not accurate enough for fine-tuning a
small part of the code. A more accurate way of testing the speed of a piece of code is to use
the so-called time stamp counter. This is an internal 64-bit clock counter which can be read
into EDX:EAX using the instruction RDTSC (read time stamp counter). The time stamp counter

counts at the CPU clock frequency so that one count equals one clock cycle, which is the
smallest relevant time unit.

Many microprocessors are able to change the clock frequency in the CPU core in response
to changing workloads. The clock frequency is increased when the workload is high, and
decreased when the workload is low, in order to save power. Intel processors have a "core
clock counter" which counts at the actual core clock frequency. The core clock counter gives
more consistent and reproducible results. This is useful when comparing alternative
implementations of a piece of code, while the time stamp counter gives a more realistic
measure of how long time the code actually takes to execute. A device driver is needed to
enable the core clock counter because this requires privileged access. Once the core clock
counter is activated, it can be read without privileged mode. A test program that can enable
the core clock counter is mentioned below.

You have to insert XOR EAX,EAX / CPUID before and after each read of the counters in

order to prevent it from executing in parallel with anything else on processors with out-of-
order execution. CPUID is a serializing instruction, which means that it flushes the pipeline

and waits for all pending operations to finish before proceeding. This is very useful for
testing purposes.

A serious problem when counting clock cycles is to avoid interrupts. Protected operating
systems do not allow you to clear the interrupt flag, so you cannot avoid interrupts and task
switches during the test. This makes test results inaccurate and irreproducible. There are
several alternative ways to overcome this problem:

1. Run the test code with a high priority to minimize the risk of interrupts and task
switches.

2. If the piece of code you are testing is not too long then you may repeat the test
several times and assume that the lowest of the clock counts measured represents a
situation where no interrupt has occurred.

3. If the piece of code you are testing takes so long time that interrupts are unavoidable
then you may repeat the test many times and take the average of the clock count
measurements.

4. Make a virtual device driver to clear the interrupt flag.

5. Use an operating system that allows clearing the interrupt flag (e.g. Windows 98
without network, in console mode).

6. Start the test program in real mode using the old DOS operating system.

I have made a series of test programs that use method 1 and 2. These programs are
available at www.agner.org/optimize/testp.zip.

A further complication occurs on processors with multiple cores if a thread can jump from
one core to another. The time stamp counters on different cores are not necessarily
synchronized. This is not a problem when testing small pieces of code if the above
precautions are taken to minimize interrupts. But it can be a problem when measuring
longer time intervals. You may need to lock the process to a single CPU core, for example
with the function SetProcessAffinityMask in Windows. This is discussed in the document

"Game Timing and Multicore Processors", Microsoft 2005 http://msdn.microsoft.com/en-

https://www.agner.org/optimize/testp.zip
http://msdn.microsoft.com/en-us/library/ee417693.aspx

 154

us/library/ee417693.aspx. The RDTSCP instruction allows you to detect if the task has

jumped to a different CPU core.

You will soon observe when measuring clock cycles that a piece of code always takes
longer time the first time it is executed where it is not in the cache. Furthermore, it may take
two or three iterations before the branch predictor has adapted to the code. The first
measurement gives the execution time when code and data are not in the cache. The
subsequent measurements give the execution time with the best possible caching.

Alignment effects on some old Intel processors can make time measurements difficult.
Assume that you have a piece code and you want to make a change which you expect to
make the code a few clocks faster. The modified code does not have exactly the same size
as the original. This means that the code below the modification point will be aligned
differently and the instruction fetch blocks will be different. If instruction fetch and decoding
is a bottleneck, then the change in the alignment may make the code several clock cycles
faster or slower. AMD processors may also have alignment effects on tiny loops.

Most x86 processors also have a set of so-called performance monitor counters. These
counters can count events such as cache misses, misalignments, branch mispredictions,
etc. They are very useful for diagnosing performance problems. The performance monitor
counters are processor-specific. You need a different test setup for each type of CPU.

Details about the performance monitor counters can be found in Intel's Software
Developer’s Manual, and in AMD's BIOS and Kernel Developer's Guide.

You need privileged access to set up the performance monitor counters. This is done most
conveniently with a device driver. The test programs at www.agner.org/optimize/testp.zip
give access to the performance monitor counters under Linux and Windows. These test
program support the different kinds of performance monitor counters in most Intel, AMD,
and VIA processors.

Intel and AMD are providing profilers that use the performance monitor counters of their
respective processors. Intel's profiler is called Vtune and AMD's profiler is called CodeXL.

18.2 The pitfalls of unit-testing

If you want to find out which version of a function performs best, then it is not sufficient to
measure clock cycles in a small test program that calls the function many times. Such a test
is unlikely to give a realistic measure of cache misses because the test program may use
less memory than the cache size. For example, an isolated test may show that it is
advantageous to roll out a loop, while a test where the function is inserted in the final
program shows a large amount of cache misses when the loop is rolled out.

Therefore, it is important not only to count clock cycles when evaluating the performance of
a function, but also to consider how much space it uses in the code cache, data cache, and
branch target buffer.

See the section named "The pitfalls of unit-testing" in manual 1: "Optimizing software in
C++" for further discussion of this problem.

19 Literature
The present manual is part of a series available from www.agner.org/optimize as mentioned
in the introduction on page 4. See manual 3: "The microarchitecture of Intel, AMD, and VIA
CPUs" of a list of relevant literature on specific processors.

http://msdn.microsoft.com/en-us/library/ee417693.aspx
https://www.agner.org/optimize/testp.zip
https://www.agner.org/optimize/

 155

 A lot of other sources also have useful information. Some useful resources are listed at
www.agner.org/optimize.

Some useful books:

R. C. Detmer: Introduction to 80x86 Assembly Language and Computer Architecture, 2'nd
ed. Jones & Bartlett, 2006. Jones & Bartlett, 2006.

Good introduction to assembly programming

J. L. Hennessy and D. A. Patterson: Computer Architecture: A Quantitative Approach, 3'rd
ed. 2002.

Good textbook on computer architecture and microarchitecture

John R. Levine: Linkers and Loaders. Morgan Kaufmann, 2000.

Explains how linkers and loaders work

Henry S. Warren, Jr.: "Hacker's Delight". Addison-Wesley, 2003.
Contains many bit manipulation tricks

20 Copyright notice
This series of five manuals is copyrighted by Agner Fog. Public distribution and mirroring is
not allowed. Non-public distribution to a limited audience for educational purposes is
allowed. The code examples in these manuals can be used without restrictions. A creative
commons license CC-BY-SA shall automatically come into force when I die. See
https://creativecommons.org/licenses/by-sa/4.0/legalcode

https://www.agner.org/optimize/
https://creativecommons.org/licenses/by-sa/4.0/legalcode

	1 Introduction
	1.1 Reasons for using assembly code
	1.2 Reasons for not using assembly code
	1.3 Operating systems covered by this manual

	2 Before you start
	2.1 Things to decide before you start programming
	2.2 Make a test strategy
	2.3 Common coding pitfalls

	3 The basics of assembly coding
	3.1 Assemblers available
	MASM
	GAS
	NASM
	YASM
	FASM
	UASM
	HLA
	TASM
	Inline assembly
	Intrinsic functions in C++
	Which assembler to choose?

	3.2 Register set and basic instructions
	Registers in 16 bit mode
	Registers in 32 bit mode
	Registers in 64 bit mode

	3.3 Addressing modes
	Addressing in 16-bit mode
	Addressing in 32-bit mode
	Position-independent code in 32-bit mode
	Addressing in 64-bit mode
	RIP-relative addressing
	32-bit absolute addressing in 64 bit mode
	64-bit absolute addressing
	Addressing relative to 64-bit base register
	Addressing static arrays in 64 bit mode
	Position-independent code in 64-bit mode

	3.4 Instruction code format
	3.5 Instruction prefixes

	4 ABI standards
	4.1 Register usage
	4.2 Data storage
	4.3 Function calling conventions
	Calling convention in 16 bit mode DOS and Windows 3.x
	Calling convention in 32 bit Windows, Linux, BSD, Mac OS X
	Calling conventions in 64 bit Windows
	Calling conventions in 64 bit Linux, BSD and Mac OS X

	4.4 Name mangling and name decoration
	4.5 Function examples

	5 Using intrinsic functions in C++
	5.1 Using intrinsic functions for system code
	5.2 Using intrinsic functions for instructions not available in standard C++
	5.3 Using intrinsic functions for vector operations
	5.4 Availability of intrinsic functions

	6 Using inline assembly
	6.1 MASM style inline assembly
	Accessing register variables
	Accessing class members and structure members
	Calling functions
	Syntax overview
	Compilers using MASM style inline assembly

	6.2 Gnu style inline assembly
	AT&T syntax
	Intel syntax

	7 Using an assembler
	7.1 Static link libraries
	7.2 Dynamic link libraries
	7.3 Shared object libraries
	7.4 Libraries in source code form
	7.5 Making classes in assembly
	7.6 Thread-safe functions
	7.7 Makefiles

	8 Making function libraries compatible with multiple compilers and platforms
	8.1 Supporting multiple name mangling schemes
	8.2 Supporting multiple calling conventions in 32 bit mode
	8.3 Supporting multiple calling conventions in 64 bit mode
	8.4 Supporting different object file formats
	8.5 Supporting other high level languages

	9 Optimizing for speed
	9.1 Identify the most critical parts of your code
	9.2 Out of order execution
	Partial registers
	Micro-operations
	Execution units
	Pipelined instructions
	Summary

	9.3 Instruction fetch, decoding and retirement
	9.4 Instruction latency and throughput
	9.5 Break dependency chains
	9.6 Jumps and calls
	Make conditional jumps most often not taken
	Tail calls
	Eliminating unconditional jumps
	Replacing conditional jumps with conditional moves
	Replacing conditional jumps with conditional set instructions
	Replacing conditional jumps with bit-manipulation instructions

	10 Optimizing for size
	10.1 Choosing shorter instructions
	10.2 Using shorter constants and addresses
	10.3 Reusing constants
	10.4 Constants in 64-bit mode
	10.5 Addresses and pointers in 64-bit mode
	10.6 Making instructions longer for the sake of alignment
	Use general form instead of short form of an instruction
	Use an equivalent instruction that is longer
	Use 4-bytes immediate operand
	Add zero displacement to pointer
	Use SIB byte
	Use prefixes

	10.7 Using multi-byte NOPs for alignment

	11 Optimizing memory access
	11.1 How caching works
	11.2 Trace cache
	11.3 µop cache
	11.4 Alignment of data
	11.5 Alignment of code
	11.6 Organizing data for improved caching
	11.7 Organizing code for improved caching
	11.8 Cache control instructions

	12 Loops
	12.1 Minimize loop overhead
	12.2 Induction variables
	12.3 Move loop-invariant code
	12.4 Find the bottlenecks
	12.5 Instruction fetch, decoding and retirement in a loop
	12.6 Distribute µops evenly between execution units
	12.7 An example of analysis for bottlenecks in vector loops
	12.8 Same example with FMA3
	12.9 Same example with AVX512
	12.10 Loop unrolling
	12.11 Vector loops using mask registers (AVX512)
	12.12 Optimize caching
	12.13 Parallelization
	12.14 Macro loops

	13 Vector programming
	13.1 Using AVX instruction set and YMM or ZMM registers
	13.2 Mixing VEX and SSE code
	Guidelines for mixing VEX and non-VEX code.
	Warm up time
	Operating system support
	YMM/ZMM and system code
	Using non-destructive three-operand instructions
	Unaligned memory access
	Compiler support
	Fused multiply-and-add instructions
	Examples

	13.3 Using AVX512 instruction set and ZMM registers
	13.4 Conditional moves in xmm and ymm registers
	13.5 Conditional moves with AVX512
	13.6 Using vector instructions with other types of data than they are intended for
	Using the shortest instruction
	Using the most efficient instruction
	Using an instruction that is not available for other types of data

	13.7 Permuting data
	13.8 Generating constants
	13.9 Accessing unaligned data and partial vectors
	Using unaligned read instructions
	Using VEX-prefixed instructions
	Partially overlapping reads
	Reading from the nearest preceding 16-bytes boundary
	Combine two unaligned vector parts into one aligned vector
	Using unaligned write instructions
	Partially overlapping writes
	Writing the beginning and the end separately
	Using masked write

	13.10 Vector operations in general purpose registers

	14 Multithreading
	14.1 Simultaneous multithreading

	15 CPU dispatching
	15.1 Checking for operating system support for XMM, YMM, and ZMM registers

	16 Problematic Instructions
	16.1 LEA instruction (all processors)
	16.2 INC and DEC
	16.3 XCHG (all processors)
	16.4 Rotates through carry (all processors)
	16.5 Bit test (all processors)
	16.6 LAHF and SAHF (all processors)
	16.7 Integer multiplication (all processors)
	16.8 Division (all processors)
	Integer division by a power of 2 (all processors)
	Integer division by a constant (all processors)
	Repeated integer division by the same value (all processors)
	Floating point division (all processors)
	Using reciprocal instruction for fast division

	16.9 String instructions (all processors)
	16.10 Vectorized string instructions (processors with SSE4.2)
	16.11 WAIT instruction (all processors)
	16.12 FCOM + FSTSW AX (all processors)
	16.13 FPREM (all processors)
	16.14 FRNDINT (all processors)
	16.15 FSCALE and exponential function (all processors)
	16.16 FPTAN (all processors)
	16.17 FSQRT, SQRTSS
	16.18 FLDCW
	16.19 MASKMOV instructions
	16.20 RDRAND and RDSEED instructions

	17 Special topics
	17.1 XMM versus floating point registers
	17.2 MMX versus XMM registers
	17.3 XMM versus YMM and ZMM registers
	17.4 Freeing floating point registers
	17.5 Transitions between floating point and MMX instructions
	17.6 Converting from floating point to integer
	17.7 Using integer instructions for floating point operations
	Testing if a floating point value is zero
	Manipulating the sign bit
	Manipulating the exponent
	Manipulating the mantissa
	Comparing numbers

	17.8 Moving blocks of data
	Prefetching
	Moving data on future processors

	17.9 Self-modifying code

	18 Measuring performance
	18.1 Testing speed
	18.2 The pitfalls of unit-testing

	19 Literature
	20 Copyright notice

